Recovering Brain Structure Network Using Functional Connectivity

Overview

Recovering-Brain-Structure-Network-Using-Functional-Connectivity

Framework:

framework

Papers:

This repository provides a PyTorch implementation of the models adopted in the two papers:

  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020.
  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Predicting Brain Structure Network using Functional Connectivity." in process.

The first paper proposes the Multi-GCN GAN model and structure preserving loss, and the second paper further expands the research on different datasets, different atlases, different functional connectivity generation methods, different models, and new evaluation measures. New results have been obtained.

Code:

dataloader.py

This file includes the preprocessing and normalization operations of the data. All the details have been introduced in the two papers. The only element needs to pay attention to is the empty list, which records the ids of the empty ROIs of specific atlases. For example, there are two brain regions in Destrieux Atlas are empty (Medial_wall for both left and right hemispheres). Therefore the corresponding two rows and columns in the generated SC and FC are zeros. We deleted these rows and columns.

model.py

We implemented different models in this file, including two different CNN-based generators, Multi-GCN-based generator and GCN-based discriminator. Different models can be chosen by directly calling the corresponding classes when run the train.py file. Different model architectures are as follows:

  • CNN (CNN-based generator, MSE loss and PCC loss)
  • Multi-GCN (Multi-GCN-based generator, MSE loss and PCC loss)
  • CNN based GAN (CNN-based generator and GCN-based discriminator, SP loss)
  • MGCN-GAN (Multi-GCN-based generator and GCN-based discriminator, SP loss)

When adopting the proposed MGCN-GAN architecture, the different topology updating methods and differnet initializations of learnable combination coefficients of multiple GCNs (theta) can be directly changed in this file, and we have annotated in this file about how to change them. For Linear regression model, we directly called the LinearRegression from sklearn.linear_model package.

Loss_custom.py

The proposed SP loss includes three components: GAN loss, MSE loss and PCC loss. In this file, we implemented the PCC loss. For the MSE loss and GAN loss, we directly called the loss functions from torch.nn module in train.py file. By directly editing train.py file, different loss functions can be chosen, including:

  • GAN Loss
  • MSE+GAN loss
  • PCC+GAN loss
  • SP loss

train.py

You need to run this file to start. All the hyper-parameters can be defined in this file.

Run python ./train.py -atlas='atlas1' -gpu_id=1.

Tested with:

  • PyTorch 1.9.0
  • Python 3.7.0

Data:

We used 1064 subjects from HCP dataset and 132 subjects from ADNI dataset in our research. For each subject, we generated the structural connectivity (SC) and the functional connectivity (FC) matrices. All of the connectivity matrices can be shared for research purpose. Please contact the author to get the data by sending email to [email protected].

Citation:

If you used the code or data of this project, please cite:

@inproceedings{zhang2020recovering,
  title={Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network},
  author={Zhang, Lu and Wang, Li and Zhu, Dajiang},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={53--61},
  year={2020},
  organization={Springer}
}
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022