Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Related tags

Deep LearningSLQ
Overview

SLQ

code for SLQ project, see our arXiv paper

@Article{Liu-preprint-slq,
  author     = {Meng Liu and David F. Gleich},
  journal    = {arXiv},
  title      = {Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering},
  year       = {2020},
  pages      = {2006.08569},
  volume     = {cs.SI},
  arxiv      = {http://arxiv.org/abs/2006.08569},
  mysoftware = {https://github.com/MengLiuPurdue/SLQ},
}

To run our code, simply include("SLQ.jl") This has minimal dependencies. Then to run the code on an Erdos-Renyi graph, run

using SparseArrays
# make an Erdos Renyi graph
A = triu(sprand(100,100,8/100),1)
A = max.(A,A') # symmetrize
fill!(A.nzval, 1) # set all values to 1. 
G = SLQ.graph(A) # convert an adjacency matrix into a graph
SLQ.slq_diffusion(SLQ.graph(A), 
	[1], # seed set
	 0.1, # value of gamma (regularization on seed) 
	 0.1, # value of kappa (sparsity regularization)
	 0.5, # value of rho (KKT apprx-val)
    SLQ.loss_type(1.4,0.0) # the loss-type, this is a 1.4-norm without huber)

SLQ via CVX

We need cvxpy. This can be installed in Julia's conda-forge environment. We try to do this when you include("SLQcvx.jl"). CVX does not support the q-huber penalties. This should just work.

Additional experiemtns with other dependencies

We need localgraphclustering for comparisons with CRD.

Install localgraphclustering

On my mac, with a homebrew install of Python, I just ran

pip3 install localgraphclustering --user

And then everything should just work. This will install localgraphclustering for the system python3. But then we use PyCall conda and just point it at the needed directory. Try include("CRD.jl").

Experiments

  • Visualization of image boundaries: experiment-image-boundary.jl
  • Visualization of effects in grid graph: experiment-grid-vis.jl
  • Experiment on LFR graphs: experiment-sparsity-runtime.jl and results analysis visualization-running-time.jl
  • Experiment on Facebook graphs: experiment-faebook.jland results analysis visualization-facebook-comapct.jl (this makes a lot of images) and a table to put into a latex document.
  • Experiment on DBLP and LiveJournal graphs: experiment-huge-graph.jl and results analysis visualization-huge-graph-compact.jl
  • Experiemnt on varying seeds in appendix: experiment-vary-seeds.jl
Owner
Meng Liu
Meng Liu
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022