AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

Overview

AOT-GAN for High-Resolution Image Inpainting

aotgan

Arxiv Paper |

AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting
Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Baining Guo.

Citation

If any part of our paper and code is helpful to your work, please generously cite and star us 😘 😘 😘 !

@inproceedings{yan2021agg,
  author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining},
  title = {Aggregated Contextual Transformations for High-Resolution Image Inpainting},
  booktitle = {Arxiv},
  pages={-},
  year = {2020}
}

Introduction

Despite some promising results, it remains challenging for existing image inpainting approaches to fill in large missing regions in high resolution images (e.g., 512x512). We analyze that the difficulties mainly drive from simultaneously inferring missing contents and synthesizing fine-grained textures for a extremely large missing region. We propose a GAN-based model that improves performance by,

  1. Enhancing context reasoning by AOT Block in the generator. The AOT blocks aggregate contextual transformations with different receptive fields, allowing to capture both informative distant contexts and rich patterns of interest for context reasoning.
  2. Enhancing texture synthesis by SoftGAN in the discriminator. We improve the training of the discriminator by a tailored mask-prediction task. The enhanced discriminator is optimized to distinguish the detailed appearance of real and synthesized patches, which can in turn facilitate the generator to synthesize more realistic textures.

Results

face_object logo

Prerequisites

  • python 3.8.8
  • pytorch (tested on Release 1.8.1)

Installation

Clone this repo.

git clone [email protected]:researchmm/AOT-GAN-for-Inpainting.git
cd AOT-GAN-for-Inpainting/

For the full set of required Python packages, we suggest create a Conda environment from the provided YAML, e.g.

conda env create -f environment.yml 
conda activate inpainting

Datasets

  1. download images and masks
  2. specify the path to training data by --dir_image and --dir_mask.

Getting Started

  1. Training:
    • Our codes are built upon distributed training with Pytorch.
    • Run
    cd src 
    python train.py  
    
  2. Resume training:
    cd src
    python train.py --resume 
    
  3. Testing:
    cd src 
    python test.py --pre_train [path to pretrained model] 
    
  4. Evaluating:
    cd src 
    python eval.py --real_dir [ground truths] --fake_dir [inpainting results] --metric mae psnr ssim fid
    

Pretrained models

CELEBA-HQ | Places2

Download the model dirs and put it under experiments/

Demo

  1. Download the pre-trained model parameters and put it under experiments/
  2. Run by
cd src
python demo.py --dir_image [folder to images]  --pre_train [path to pre_trained model] --painter [bbox|freeform]
  1. Press '+' or '-' to control the thickness of painter.
  2. Press 'r' to reset mask; 'k' to keep existing modifications; 's' to save results.
  3. Press space to perform inpainting; 'n' to move to next image; 'Esc' to quit demo.

face logo

TensorBoard

Visualization on TensorBoard for training is supported.

Run tensorboard --logdir [log_folder] --bind_all and open browser to view training progress.

Acknowledgements

We would like to thank edge-connect, EDSR_PyTorch.

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022