ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

Overview

ADGAN

PyTorch | project page | paper

PyTorch implementation for controllable person image synthesis.

Controllable Person Image Synthesis with Attribute-Decomposed GAN
Yifang Men, Yiming Mao, Yuning Jiang, Wei-Ying Ma, Zhouhui Lian, Peking University & ByteDance AI Lab, CVPR 2020(Oral).

Component Attribute Transfer

Pose Transfer

Requirement

  • python 3
  • pytorch(>=1.0)
  • torchvision
  • numpy
  • scipy
  • scikit-image
  • pillow
  • pandas
  • tqdm
  • dominate

Getting Started

You can directly download our generated images (in Deepfashion) from Google Drive.

Installation

  • Clone this repo:
git clone https://github.com/menyifang/ADGAN.git
cd ADGAN

Data Preperation

We use DeepFashion dataset and provide our dataset split files, extracted keypoints files and extracted segmentation files for convience.

The dataset structure is recommended as:

+—deepfashion
|   +—fashion_resize
|       +--train (files in 'train.lst')
|          +-- e.g. fashionMENDenimid0000008001_1front.jpg
|       +--test (files in 'test.lst')
|          +-- e.g. fashionMENDenimid0000056501_1front.jpg
|       +--trainK(keypoints of person images)
|          +-- e.g. fashionMENDenimid0000008001_1front.jpg.npy
|       +--testK
|          +-- e.g. fashionMENDenimid0000056501_1front.jpg.npy
|   +—semantic_merge
|   +—fashion-resize-pairs-train.csv
|   +—fashion-resize-pairs-test.csv
|   +—fashion-resize-annotation-pairs-train.csv
|   +—fashion-resize-annotation-pairs-test.csv
|   +—train.lst
|   +—test.lst
|   +—vgg19-dcbb9e9d.pth
|   +—vgg_conv.pth
...
  1. Person images
python tool/generate_fashion_datasets.py

Note: In our settings, we crop the images of DeepFashion into the resolution of 176x256 in a center-crop manner.

  1. Keypoints files
  • Download train/test pairs and train/test key points annotations from Google Drive, including fashion-resize-pairs-train.csv, fashion-resize-pairs-test.csv, fashion-resize-annotation-train.csv, fashion-resize-annotation-train.csv. Put these four files under the deepfashion directory.
  • Generate the pose heatmaps. Launch
python tool/generate_pose_map_fashion.py
  1. Segmentation files
  • Extract human segmentation results from existing human parser (e.g. Look into Person) and merge into 8 categories. Our segmentation results are provided in Google Drive, including ‘semantic_merge2’ and ‘semantic_merge3’ in different merge manner. Put one of them under the deepfashion directory.

Optionally, you can also generate these files by yourself.

  1. Keypoints files

We use OpenPose to generate keypoints.

  • Download pose estimator from Google Drive. Put it under the root folder ADGAN.
  • Change the paths input_folder and output_path in tool/compute_coordinates.py. And then launch
python2 compute_coordinates.py
  1. Dataset split files
python2 tool/create_pairs_dataset.py

Train a model

bash ./scripts/train.sh 

Test a model

Download our pretrained model from Google Drive. Modify your data path and launch

bash ./scripts/test.sh 

Evaluation

We adopt SSIM, IS, DS, CX for evaluation. This part is finished by Yiming Mao.

1) SSIM

For evaluation, Tensorflow 1.4.1(python3) is required.

python tool/getMetrics_market.py

2) DS Score

Download pretrained on VOC 300x300 model and install propper caffe version SSD. Put it in the ssd_score forlder.

python compute_ssd_score_fashion.py --input_dir path/to/generated/images

3) CX (Contextual Score)

Refer to folder ‘cx’ to compute contextual score.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{men2020controllable,
  title={Controllable Person Image Synthesis with Attribute-Decomposed GAN},
  author={Men, Yifang and Mao, Yiming and Jiang, Yuning and Ma, Wei-Ying and Lian, Zhouhui},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2020 IEEE Conference on},
  year={2020}
}


Acknowledgments

Our code is based on PATN and thanks for their great work.

Owner
Men Yifang
Men Yifang
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023