Data from "Datamodels: Predicting Predictions with Training Data"

Overview

Data from "Datamodels: Predicting Predictions with Training Data"

Here we provide the data used in the paper "Datamodels: Predicting Predictions with Training Data" (arXiv, Blog).

Note that all of the data below is stored on Amazon S3 using the “requester pays” option to avoid a blowup in our data transfer costs (we put estimated AWS costs below)---if you are on a budget and do not mind waiting a bit longer, please contact us at [email protected] and we can try to arrange a free (but slower) transfer.

Citation

To cite this data, please use the following BibTeX entry:

@inproceedings{ilyas2022datamodels,
  title = {Datamodels: Predicting Predictions from Training Data},
  author = {Andrew Ilyas and Sung Min Park and Logan Engstrom and Guillaume Leclerc and Aleksander Madry},
  booktitle = {ArXiv preprint arXiv:2202.00622},
  year = {2022}
}

Overview

We provide the data used in our paper to analyze two image classification datasets: CIFAR-10 and (a modified version of) FMoW.

For each dataset, the data consists of two parts:

  1. Training data for datamodeling, which consists of:
    • Training subsets or "training masks", which are the independent variables of the regression tasks; and
    • Model outputs (correct-class margins and logits), which are the dependent variables of the regression tasks.
  2. Datamodels estimated from this data using LASSO.

For each dataset, there are multiple versions of the data depending on the choice of the hyperparameter α, the subsampling fraction (this is the random fraction of training examples on which each model is trained; see Section 2 of our paper for more information).

Following table shows the number of models we trained and used for estimating datamodels (also see Table 1 in paper):

Subsampling α (%) CIFAR-10 FMoW
10 1,500,000 N/A
20 750,000 375,000
50 300,000 150,000
75 600,000 300,000

Training data

For each dataset and $\alpha$, we provide the following data:

# M is the number of models trained
/{DATASET}/data/train_masks_{PCT}pct.npy  # [M x N_train] boolean
/{DATASET}/data/test_margins_{PCT}pct.npy # [M x N_test] np.float16
/{DATASET}/data/test_margins_{PCT}pct.npy # [M x N_train] np.float16

(The files live in the Amazon S3 bucket madrylab-datamodels; we provide instructions for acces in the next section.)

Each row of the above matrices corresponds to one instance of model trained; each column corresponds to a training or test example. CIFAR-10 examples are organized in the default order; for FMoW, see here. For example, a train mask for CIFAR-10 has the shape [M x 50,000].

For CIFAR-10, we also provide the full logits for all ten classes:

/cifar/data/train_logits_{PCT}pct.npy  # [M x N_test x 10] np.float16
/cifar/data/test_logits_{PCT}pct.npy   # [M x N_test x 10] np.float16

Note that you can also compute the margins from these logits.

We include an addtional 10,000 models for each setting that we used for evaluation; the total number of models in each matrix is M as indicated in the above table plus 10,000.

Datamodels

All estimated datamodels for each split (train or test) are provided as a dictionary in a .pt file (load with torch.load):

/{DATASET}/datamodels/train_{PCT}pct.pt
/{DATASET}/datamodels/test_{PCT}pct.pt

Each dictionary contains:

  • weight: matrix of shape N_train x N, where N is either N_train or N_test depending on the group of target examples
  • bias: vector of length N, corresponding to biases for each datamodel
  • lam: vector of length N, regularization λ chosen by CV for each datamodel

Downloading

We make all of our data available via Amazon S3. Total sizes of the training data files are as follows:

Dataset, α (%) masks, margins (GB) logits (GB)
CIFAR-10, 10 245 1688
CIFAR-10, 20 123 849
CIFAR-10, 50 49 346
CIFAR-10, 75 98 682
FMoW, 20 25.4 -
FMoW, 50 10.6 -
FMoW, 75 21.2 -

Total sizes of datamodels data (the model weights) are 16.9 GB for CIFAR-10 and 0.75 GB for FMoW.

API

You can download them using the Amazon S3 CLI interface with the requester pays option as follows (replacing the fields {...} as appropriate):

aws s3api get-object --bucket madrylab-datamodels \
                     --key {DATASET}/data/{SPLIT}_{DATA_TYPE}_{PCT}.npy \
                     --request-payer requester \
                     [OUT_FILE]

For example, to retrieve the test set margins for CIFAR-10 models trained on 50% subsets, use:

aws s3api get-object --bucket madrylab-datamodels \
                     --key cifar/data/test_margins_50pct.npy \
                     --request-payer requester \
                     test_margins_50pct.npy

Pricing

The total data transfer fee (from AWS to internet) for all of the data is around $374 (= 4155 GB x 0.09 USD per GB).

If you only download everything except for the logits (which is sufficient to reproduce all of our analysis), the fee is around $53.

Loading data

The data matrices are in numpy array format (.npy). As some of these are quite large, you can read small segments without reading the entire file into memory by additionally specifying the mmap_mode argument in np.load:

X = np.load('train_masks_10pct.npy', mmap_mode='r')
Y = np.load('test_margins_10pct.npy', mmap_mode='r')
...
# Use segments, e.g, X[:100], as appropriate
# Run regress(X, Y[:]) using choice of estimation algorithm.

FMoW data

We use a customized version of the FMoW dataset from WILDS (derived from this original dataset) that restricts the year of the training set to 2012. Our code is adapted from here.

To use the dataset, first download WILDS using:

pip install wilds

(see here for more detailed instructions).

In our paper, we only use the in-distribution training and test splits in our analysis (the original version from WILDS also has out-of-distribution as well as validation splits). Our dataset splits can be constructed as follows and used like a PyTorch dataset:

from fmow import FMoWDataset

ds = FMoWDataset(root_dir='/mnt/nfs/datasets/wilds/',
                     split_scheme='time_after_2016')

transform_steps = [
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]
transform = transforms.Compose(transform_steps)

ds_train = ds.get_subset('train', transform=transform)
ds_test = ds.get_subset('id_test', transform=transform)

The columns of matrix data described above is ordered according to the default ordering of examples given by the above constructors.

Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021