AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Overview

Data Science on AWS - O'Reilly Book

Open In SageMaker Studio Lab

Get the book on Amazon.com

Data Science on AWS

Book Outline

Book Outline

Quick Start Workshop (4-hours)

Workshop Paths

In this quick start hands-on workshop, you will build an end-to-end AI/ML pipeline for natural language processing with Amazon SageMaker. You will train and tune a text classifier to predict the star rating (1 is bad, 5 is good) for product reviews using the state-of-the-art BERT model for language representation. To build our BERT-based NLP text classifier, you will use a product reviews dataset where each record contains some review text and a star rating (1-5).

Quick Start Workshop Learning Objectives

Attendees will learn how to do the following:

  • Ingest data into S3 using Amazon Athena and the Parquet data format
  • Visualize data with pandas, matplotlib on SageMaker notebooks
  • Detect statistical data bias with SageMaker Clarify
  • Perform feature engineering on a raw dataset using Scikit-Learn and SageMaker Processing Jobs
  • Store and share features using SageMaker Feature Store
  • Train and evaluate a custom BERT model using TensorFlow, Keras, and SageMaker Training Jobs
  • Evaluate the model using SageMaker Processing Jobs
  • Track model artifacts using Amazon SageMaker ML Lineage Tracking
  • Run model bias and explainability analysis with SageMaker Clarify
  • Register and version models using SageMaker Model Registry
  • Deploy a model to a REST endpoint using SageMaker Hosting and SageMaker Endpoints
  • Automate ML workflow steps by building end-to-end model pipelines using SageMaker Pipelines

Extended Workshop (8-hours)

Workshop Paths

In the extended hands-on workshop, you will get hands-on with advanced model training and deployment techniques such as hyper-parameter tuning, A/B testing, and auto-scaling. You will also setup a real-time, streaming analytics and data science pipeline to perform window-based aggregations and anomaly detection.

Extended Workshop Learning Objectives

Attendees will learn how to do the following:

  • Perform automated machine learning (AutoML) to find the best model from just your dataset with low-code
  • Find the best hyper-parameters for your custom model using SageMaker Hyper-parameter Tuning Jobs
  • Deploy multiple model variants into a live, production A/B test to compare online performance, live-shift prediction traffic, and autoscale the winning variant using SageMaker Hosting and SageMaker Endpoints
  • Setup a streaming analytics and continuous machine learning application using Amazon Kinesis and SageMaker

Workshop Instructions

Open In SageMaker Studio Lab

Amazon SageMaker Studio Lab is a free service that enables anyone to learn and experiment with ML without needing an AWS account, credit card, or cloud configuration knowledge.

1. Request Amazon SageMaker Studio Lab Account

Go to Amazon SageMaker Studio Lab, and request a free acount by providing a valid email address.

Amazon SageMaker Studio Lab Amazon SageMaker Studio Lab - Request Account

Note that Amazon SageMaker Studio Lab is currently in public preview. The number of new account registrations will be limited to ensure a high quality of experience for all customers.

2. Create Studio Lab Account

When your account request is approved, you will receive an email with a link to the Studio Lab account registration page.

You can now create your account with your approved email address and set a password and your username. This account is separate from an AWS account and doesn't require you to provide any billing information.

Amazon SageMaker Studio Lab - Create Account

3. Sign in to your Studio Lab Account

You are now ready to sign in to your account.

Amazon SageMaker Studio Lab - Sign In

4. Select your Compute instance, Start runtime, and Open project

CPU Option

Select CPU as the compute type and click Start runtime.

Amazon SageMaker Studio Lab - CPU

Once the Status shows Running, click Open project

Amazon SageMaker Studio Lab - GPU Running

5. Launch a New Terminal within Studio Lab

Amazon SageMaker Studio Lab - New Terminal

6. Clone this GitHub Repo in the Terminal

Within the Terminal, run the following:

cd ~ && git clone https://github.com/data-science-on-aws/oreilly_book

Amazon SageMaker Studio Lab - Clone Repo

7. Create data_science_on_aws Conda kernel

Within the Terminal, run the following:

cd ~/oreilly_book/ && conda env create -f environment.yml || conda env update -f environment.yml && conda activate data_science_on_aws

Amazon SageMaker Studio Lab - Create Kernel

If you see an error like the following, just ignore it. This will appear if you already have an existing Conda environment with this name. In this case, we will update the environment.

CondaValueError: prefix already exists: /home/studio-lab-user/.conda/envs/data_science_on_aws

8. Start the Workshop!

Navigate to oreilly_book/00_quickstart/ in SageMaker Studio Lab and start the workshop!

You may need to refresh your browser if you don't see the new oreilly_book/ directory.

Amazon SageMaker Studio Lab - Start Workshop

When you open the notebooks, make sure to select the data_science_on_aws kernel.

Amazon SageMaker Studio Lab - Select Kernel

Owner
Data Science on AWS
Data Science on AWS
Data Science on AWS
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022