The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

Overview

GitHub Contributors Image

MLOps

The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

In this paradigm, teams can easily collaborate in models, with clear tracking of the data throughout the process of cleaning, processing, and feature creation. Automating every repetitive process avoids human error and reduces the delivery time, ensuring the team keeps focusing on the Business Problem.

Some benefits:

  • Versioning data and code, making models to be auditable and reproducible.

  • Automated tests and building ensuring quality functioning of artifacts and availability for the delivery pipelines.

  • Makes it easier and faster the deployment of new models by using an automated cycle.

The MLOps Project

The MLOps project is a path to learning how to implement a study case aiming to be testable and reproducible within the CI/CD methodology, using the best programming practices.

The scope of this project is delimited as you can see in the image below.

We will select the best tool to implement every step, integrate them, and build a Machine Learning Orchestrator. That said, in the end, new ML experiments will be easily made, and delivered as simples as typing a terminal command or clicking on a button!


Prerequisites

For mlops_project to work correctly, first, you should install the prerequisites

Contributing

Have an idea of how to improve this project but don't know how to start, try to contribute

You can understand the project organization here

How to use?

If you are interested just in using this package, follow the steps below.

  1. Clone the repository

    Open a terminal (if you are using Windows, make sure of using the git bash) navigate to the desired destination folder and clone the repository,

    git clone https://github.com/Schots/mlops_project.git

    The Makefile on the root folder defines a set of functions needed to automate repetitive processes in this project. Type "make" in the terminal and see the available functions.


  1. Create an environment & Install requirements

    Create a Python virtual environment for the MLOps project on your local machine. Use any tool you desire. Activate the environment and install the requirements using make:

    make requirements
  2. Download data

    To download the raw dataset, use the get_data

    make get_data

    type the dataset name when prompted. The zip file with data will be downloaded and unzipped under the data/raw folder


Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Maykon Schots
Maykon Schots
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs ยป Report Bug ยท Request Feature Table of Co

Will Fong 2 Dec 10, 2021
Lightweight Machine Learning Experiment Logging ๐Ÿ“–

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
TensorFlow implementation of an arbitrary order Factorization Machine

This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

Mikhail Trofimov 785 Dec 21, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization โ”œโ”€โ”€ LICEN

Ashish Tele 6 Feb 06, 2022
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
XManager: A framework for managing machine learning experiments ๐Ÿง‘โ€๐Ÿ”ฌ

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023