Machine Learning Algorithms

Overview

Machine-Learning-Algorithms

In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the person's favorite shopping type based on the information provided. In this context, 13 questions were asked to the user. As a result of these questions, the estimation of the shopping type, which is a classification problem, will be carried out with 5 different algorithms.

These algorithms;

  • Logistic Regression
  • Random Forest Classifier
  • Support Vector Machine
  • K Neighbors
  • Decision Tree

algorithms will have a total of 12 parameters

A total of 219 people participated in the survey and the answers given to this form were used in the training of the algorithm.

Target variables to be estimated;

  • Clothing
  • Technology
  • Home/Life
  • Book/Magazine

The questions asked to make the estimation are as follows:

  • Gender
  • Age
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • Which store would you prefer to go to?
  • What is your favorite season?
  • What is the importance of the dollar exchange rate for your shopping?
  • What is your satisfaction level with your budget for shopping?
  • How would you rate your social life?
  • Which of the online shopping sites do you prefer?
  • How often do you go shopping?
  • What is your average sleep time per day?
  • What is your favorite type of shopping? // target

The dataset, which is in the form of a csv file, is read to the system as a dataframe. And the column of information in which hour and minute the user filled out the form, which does not make sense for our algorithm, is removed.

Since the numbers in some columns is way more different than the others before the PCA operation is performed, the standardization process is applied to the columns so that they do not have a greater effect than the combination of these columns during the PCA operation.

The features and target columns to be used during the export of the dataset to the algorithms are determined.

In order to fit the resulting algorithms, the initial state of the dataset, its normalized state and the pca applied states are kept separately. The generated data is divided into parts as train = 0.8 and test = 0.2. Cross Validation process will be applied on 0.8 train data.

Before giving the dataset to the 5 algorithms, the answers written in the text in the dataset and the text in the other questions are encoded and the dataset is converted into numbers.

The 5 algorithms are functions from the sklearn library. The Cross Validation process was performed using the GridSearchCV() function, excluding the Logistic Regression algorithm. In the Logistic regression algorithm, since it is possible to do Cross Validation with the logistic regression function it is not necessary to use GridSearchCV().

GridSearchCV() applies K-Fold Cross Validation by trying the parameters I gave for the function, the number of K for my project is 10. By dividing the cross validation process parameters and the train data we provide, it is determined at which values we can get the best result.

An algorithm is created using the determined parameters and the algorithm is tested with the test data to be fitted with the train data.

Detailed information about dataset can be found in the report.

Owner
Göktuğ Ayar
Computer Engineering student at Yildiz Technical University
Göktuğ Ayar
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022