[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

Overview

GNeRF

This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation is written in Pytorch.

architecture

Abstract

We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained popularity for remarkable realistic novel view synthesis. However, most of them heavily rely on accurate camera poses estimation, while few recent methods can only optimize the unknown camera poses in roughly forward-facing scenes with relatively short camera trajectories and require rough camera poses initialization. Differently, our GNeRF only utilizes randomly initialized poses for complex outside-in scenarios. We propose a novel two-phases end-to-end framework. The first phase takes the use of GANs into the new realm for optimizing coarse camera poses and radiance fields jointly, while the second phase refines them with additional photometric loss. We overcome local minima using a hybrid and iterative optimization scheme. Extensive experiments on a variety of synthetic and natural scenes demonstrate the effectiveness of GNeRF. More impressively, our approach outperforms the baselines favorably in those scenes with repeated patterns or even low textures that are regarded as extremely challenging before.

Installation

We recommand using Anaconda to setup the environment. Run the following commands:

# Create a conda environment named 'gnerf'
conda create --name gnerf python=3.7
# Activate the environment
conda activate gnerf
# Install requirements
pip install -r requirements.txt

Data

Blender

Download from the NeRF official Google Drive . Please download and unzip nerf_synthetic.zip.

DTU

Download the preprocessed DTU training data from original MVSNet repo and unzip. We also provide a few DTU examples for fast testing.

Your own data

We share some advices on preparing your own dataset and setting related parameters:

  • Pose sampling space should be close to the data: Our method requires a reasonable prior pose distribution.
  • The training may fail to converge on symmetrical scenes: The inversion network can not map an image to different poses.

Running

python train.py ./config/CONFIG.yaml --data_dir PATH/TO/DATASET

where you replace CONFIG.yaml with your config file (blender.yaml for blender dataset and dtu.yaml for DTU dataset). You can optionally monitor on the training process using tensorboard by adding --open_tensorboard argument. The default setting takes around 13GB GPU memory. After 40k iterations, you should get a video like these:

Evaluation

python eval.py --ckpt PATH/TO/CKPT.pt --gt PATH/TO/GT.json 

where you replace PATH/TO/CKPT.pt with your trained model checkpoint, and PATH/TO/GT.json with the json file in NeRF-Synthetic dataset. Then, just run the ATE toolbox on the evaluation directory.

List of Possible Improvements

For future work, we recommend the following aspects to further improve the performance and stability:

  • Replace the single NeRF network with mip-NeRF network: The use of separate MLPs in the original NeRF paper is a key detail to represent thin objects in the scene, if you retrain the original NeRF with only one MLP you will find a decrease in performance. While in our work, a single MLP network is necessary to keep the coarse image and fine image aligned. The cone casting and IPE features of mip-NeRF allow it to explicitly encode scale into the input features and thereby enable an MLP to learn a multiscale representation of the scene.

  • Combine BARF to further overcome local minima: The BARF method shows that susceptibility to noise from positional encoding affects the basin of attraction for registration and present a coarse-to-fine registration strategy.

  • Combine NeRF++ to represent the background in real scenes with complex background.

Citation

If you find our code or paper useful, please consider citing

@InProceedings{meng2021gnerf,
    author = {Meng, Quan and Chen, Anpei and Luo, Haimin and Wu, Minye and Su, Hao and Xu, Lan and He, Xuming and Yu, Jingyi},
    title = {{G}{N}e{R}{F}: {G}{A}{N}-based {N}eural {R}adiance {F}ield without {P}osed {C}amera},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year = {2021}
}

Some code snippets are borrowed from GRAF and nerf_pl. Thanks for these great projects.

Owner
Quan Meng
Quan Meng
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022