Self-training for Few-shot Transfer Across Extreme Task Differences

Related tags

Deep LearningSTARTUP
Overview

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP)

Introduction

This repo contains the official implementation of the following ICLR2021 paper:

Title: Self-training for Few-shot Transfer Across Extreme Task Differences
Authors: Cheng Perng Phoo, Bharath Hariharan
Institution: Cornell University
Arxiv: https://arxiv.org/abs/2010.07734
Abstract:
Most few-shot learning techniques are pre-trained on a large, labeled "base dataset". In problem domains where such large labeled datasets are not available for pre-training (e.g., X-ray, satellite images), one must resort to pre-training in a different "source" problem domain (e.g., ImageNet), which can be very different from the desired target task. Traditional few-shot and transfer learning techniques fail in the presence of such extreme differences between the source and target tasks. In this paper, we present a simple and effective solution to tackle this extreme domain gap: self-training a source domain representation on unlabeled data from the target domain. We show that this improves one-shot performance on the target domain by 2.9 points on average on the challenging BSCD-FSL benchmark consisting of datasets from multiple domains.

Requirements

This codebase is tested with:

  1. PyTorch 1.7.1
  2. Torchvision 0.8.2
  3. NumPy
  4. Pandas
  5. wandb (used for logging. More here: https://wandb.ai/)

Running Experiments

Step 0: Dataset Preparation

MiniImageNet and CD-FSL: Download the datasets for CD-FSL benchmark following step 1 and step 2 here: https://github.com/IBM/cdfsl-benchmark
tieredImageNet: Prepare the tieredImageNet dataset following https://github.com/mileyan/simple_shot. Note after running the preparation script, you will need to split the saved images into 3 different folders: train, val, test.

Step 1: Teacher Training on the Base Dataset

We provide scripts to produce teachers for different base datasets. Regardless of the base datasets, please follow the following steps to produce the teachers:

  1. Go into the directory teacher_miniImageNet/ (teacher_ImageNet/ for ImageNet)
  2. Take care of the TODO: in run.sh and configs.py (if applicable).
  3. Run bash run.sh to produce the teachers.

Note that for miniImageNet and tieredImageNet, the training script is adapted based on the official script provided by the CD-FSL benchmark. For ImageNet, we simply download the pre-trained models from PyTorch and convert them to relevant format.

Step 2: Student Training

To train the STARTUP's representation, please follow the following steps:

  1. Go into the directory student_STARTUP/ (student_STARTUP_no_self_supervision/ for the version without SimCLR)
  2. Take care of the TODO: in run.sh and configs.py
  3. Run bash run.sh to produce the student/STARTUP representation.

Step 3: Evaluation

To evaluate different representations, go into evaluation/, modify the TODO: in run.sh and configs.py and run bash run.sh.

Notes

  1. When producing the results for the submitted paper, we did not set torch.backends.cudnn.deterministic and torch.backends.cudnn.benchmark properly, thus causing non-deterministic behaviors. We have rerun our experiments and the updated numbers can be found here: https://docs.google.com/spreadsheets/d/1O1e9xdI1SxVvRWK9VVxcO8yefZhePAHGikypWfhRv8c/edit?usp=sharing. Although some of the numbers has changed, the conclusion in the paper remains unchanged. STARTUP is able to outperform all the baselines, bringing forth tremendous improvements to cross-domain few-shot learning.
  2. All the trainings are done on Nvidia Titan RTX GPU. Evaluation of different representations are performed using Nvidia RTX 2080Ti. Regardless of the GPU models, CUDA11 is used.
  3. This repo is built upon the official CD-FSL benchmark repo: https://github.com/IBM/cdfsl-benchmark/tree/9c6a42f4bb3d2638bb85d3e9df3d46e78107bc53. We thank the creators of the CD-FSL benchmark for releasing code to the public.
  4. If you find this codebase or STARTUP useful, please consider citing our paper:
@inproceeding{phoo2021STARTUP,
    title={Self-training for Few-shot Transfer Across Extreme Task Differences},
    author={Phoo, Cheng Perng and Hariharan, Bharath},
    booktitle={Proceedings of the International Conference on Learning Representations},
    year={2021}
}
Owner
Cheng Perng Phoo
PhD Student at Cornell
Cheng Perng Phoo
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023