Self-training for Few-shot Transfer Across Extreme Task Differences

Related tags

Deep LearningSTARTUP
Overview

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP)

Introduction

This repo contains the official implementation of the following ICLR2021 paper:

Title: Self-training for Few-shot Transfer Across Extreme Task Differences
Authors: Cheng Perng Phoo, Bharath Hariharan
Institution: Cornell University
Arxiv: https://arxiv.org/abs/2010.07734
Abstract:
Most few-shot learning techniques are pre-trained on a large, labeled "base dataset". In problem domains where such large labeled datasets are not available for pre-training (e.g., X-ray, satellite images), one must resort to pre-training in a different "source" problem domain (e.g., ImageNet), which can be very different from the desired target task. Traditional few-shot and transfer learning techniques fail in the presence of such extreme differences between the source and target tasks. In this paper, we present a simple and effective solution to tackle this extreme domain gap: self-training a source domain representation on unlabeled data from the target domain. We show that this improves one-shot performance on the target domain by 2.9 points on average on the challenging BSCD-FSL benchmark consisting of datasets from multiple domains.

Requirements

This codebase is tested with:

  1. PyTorch 1.7.1
  2. Torchvision 0.8.2
  3. NumPy
  4. Pandas
  5. wandb (used for logging. More here: https://wandb.ai/)

Running Experiments

Step 0: Dataset Preparation

MiniImageNet and CD-FSL: Download the datasets for CD-FSL benchmark following step 1 and step 2 here: https://github.com/IBM/cdfsl-benchmark
tieredImageNet: Prepare the tieredImageNet dataset following https://github.com/mileyan/simple_shot. Note after running the preparation script, you will need to split the saved images into 3 different folders: train, val, test.

Step 1: Teacher Training on the Base Dataset

We provide scripts to produce teachers for different base datasets. Regardless of the base datasets, please follow the following steps to produce the teachers:

  1. Go into the directory teacher_miniImageNet/ (teacher_ImageNet/ for ImageNet)
  2. Take care of the TODO: in run.sh and configs.py (if applicable).
  3. Run bash run.sh to produce the teachers.

Note that for miniImageNet and tieredImageNet, the training script is adapted based on the official script provided by the CD-FSL benchmark. For ImageNet, we simply download the pre-trained models from PyTorch and convert them to relevant format.

Step 2: Student Training

To train the STARTUP's representation, please follow the following steps:

  1. Go into the directory student_STARTUP/ (student_STARTUP_no_self_supervision/ for the version without SimCLR)
  2. Take care of the TODO: in run.sh and configs.py
  3. Run bash run.sh to produce the student/STARTUP representation.

Step 3: Evaluation

To evaluate different representations, go into evaluation/, modify the TODO: in run.sh and configs.py and run bash run.sh.

Notes

  1. When producing the results for the submitted paper, we did not set torch.backends.cudnn.deterministic and torch.backends.cudnn.benchmark properly, thus causing non-deterministic behaviors. We have rerun our experiments and the updated numbers can be found here: https://docs.google.com/spreadsheets/d/1O1e9xdI1SxVvRWK9VVxcO8yefZhePAHGikypWfhRv8c/edit?usp=sharing. Although some of the numbers has changed, the conclusion in the paper remains unchanged. STARTUP is able to outperform all the baselines, bringing forth tremendous improvements to cross-domain few-shot learning.
  2. All the trainings are done on Nvidia Titan RTX GPU. Evaluation of different representations are performed using Nvidia RTX 2080Ti. Regardless of the GPU models, CUDA11 is used.
  3. This repo is built upon the official CD-FSL benchmark repo: https://github.com/IBM/cdfsl-benchmark/tree/9c6a42f4bb3d2638bb85d3e9df3d46e78107bc53. We thank the creators of the CD-FSL benchmark for releasing code to the public.
  4. If you find this codebase or STARTUP useful, please consider citing our paper:
@inproceeding{phoo2021STARTUP,
    title={Self-training for Few-shot Transfer Across Extreme Task Differences},
    author={Phoo, Cheng Perng and Hariharan, Bharath},
    booktitle={Proceedings of the International Conference on Learning Representations},
    year={2021}
}
Owner
Cheng Perng Phoo
PhD Student at Cornell
Cheng Perng Phoo
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022