(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Overview

Relational Embedding for Few-Shot Classification (ICCV 2021)

teaser

We propose to address the problem of few-shot classification by meta-learning “what to observe” and “where to attend” in a relational perspective. Our method leverages relational patterns within and between images via self-correlational representation (SCR) and cross-correlational attention (CCA). Within each image, the SCR module transforms a base feature map into a self-correlation tensor and learns to extract structural patterns from the tensor. Between the images, the CCA module computes cross-correlation between two image representations and learns to produce co-attention between them. (a), (b), and (c) visualize the activation maps of base features, self-correlational representation, and cross-correlational attention, respectively. Our Relational Embedding Network (RENet) combines the two relational modules to learn relational embedding in an end-to-end manner. In experimental evaluation, it achieves consistent improvements over state-of-the-art methods on four widely used few-shot classification benchmarks of miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS.

✔️ Requirements

⚙️ Conda environmnet installation

conda env create --name renet_iccv21 --file environment.yml
conda activate renet_iccv21

📚 Datasets

cd datasets
bash download_miniimagenet.sh
bash download_cub.sh
bash download_cifar_fs.sh
bash download_tieredimagenet.sh

🌳 Authors' checkpoints

cd checkpoints
bash download_checkpoints_renet.sh

The file structure should be as follows:

renet/
├── datasets/
├── model/
├── scripts/
├── checkpoints/
│   ├── cifar_fs/
│   ├── cub/
│   ├── miniimagenet/
│   └── tieredimagenet/
train.py
test.py
README.md
environment.yml

📌 Quick start: testing scripts

To test in the 5-way K-shot setting:

bash scripts/test/{dataset_name}_5wKs.sh

For example, to test ReNet on the miniImagenet dataset in the 5-way 1-shot setting:

bash scripts/test/miniimagenet_5w1s.sh

🔥 Training scripts

To train in the 5-way K-shot setting:

bash scripts/train/{dataset_name}_5wKs.sh

For example, to train ReNet on the CUB dataset in the 5-way 1-shot setting:

bash scripts/train/cub_5w1s.sh

Training & testing a 5-way 1-shot model on the CUB dataset using a TitanRTX 3090 GPU takes 41m 30s.

🎨 Few-shot classification results

Experimental results on few-shot classification datasets with ResNet-12 backbone. We report average results with 2,000 randomly sampled episodes.

datasets miniImageNet tieredImageNet
setups 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
accuracy 67.60 82.58 71.61 85.28
datasets CUB-200-2011 CIFAR-FS
setups 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
accuracy 79.49 91.11 74.51 86.60

🔍 Related repos

Our project references the codes in the following repos:

💌 Acknowledgement

We adopted the main code bases from DeepEMD, and we really appreciate it 😃 . We also sincerely thank all the ICCV reviewers, especially R#2, for valuable suggestions.

📜 Citing RENet

If you find our code or paper useful to your research work, please consider citing our work using the following bibtex:

@inproceedings{kang2021renet,
    author   = {Kang, Dahyun and Kwon, Heeseung and Min, Juhong and Cho, Minsu},
    title    = {Relational Embedding for Few-Shot Classification},
    booktitle= {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year     = {2021}
}
Owner
Dahyun Kang
Dahyun Kang
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023