Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

Overview

clip-text-decoder

Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

Example Predictions

Example captions were computed with the pretrained model mentioned below.

"A man riding a wave on top of a surfboard."

A surfer riding a wave

A baseball player is swinging a bat at a ball.

Baseball player

"A dog running across a field with a frisbee."

Dog with frisbee

Installation

Install for easier access to the following objects/classes:

  • clip_text_decoder.datasets.ClipCocoCaptionsDataset
  • clip_text_decoder.models.ClipDecoder
  • clip_text_decoder.models.ClipDecoderInferenceModel
  • clip_text_decoder.tokenizer.Tokenizer

The train.py script will not be available in the installed package, since it's located in the root directory. To train new models, either clone this repository or recreate train.py locally.

Using pip:

pip install clip-text-decoder

From source:

git clone https://github.com/fkodom/clip-text-decoder.git
cd clip-text-decoder
pip install .

NOTE: You'll also need to install openai/CLIP to encode images with CLIP. This is also required by ClipCocoCaptionsDataset to build the captions dataset the first time (cached for subsequent calls).

pip install "clip @ git+https://github.com/openai/CLIP.git"

For technical reasons, the CLIP dependency can't be included in the PyPI package, since it's not an officially published package.

Training

Open In Colab

Launch your own training session using the provided script (train.py):

python train.py --max-epochs 5

Training CLI arguments, along with their default values:

--max-epochs 5  # (int)
--num-layers 6  # (int)
--dim-feedforward 256  # (int)
--precision 16  # (16 or 32)
--seed 0  # (int)

Inference

The training script will produce a model.zip archive, containing the Tokenizer and trained model parameters. To perform inference with it:

import clip
from PIL import Image
import torch

from clip_text_decoder.model import ClipDecoderInferenceModel

device = "cuda" if torch.cuda.is_available() else "cpu"
model = ClipDecoderInferenceModel.load("path/to/model.zip").to(device)
clip_model, clip_preprocessor = clip.load("ViT-B/32", device=device, jit=False)

# Create a blank dummy image
dummy_image = Image.new("RGB", (224, 224))
preprocessed = clip_preprocessor(dummy_image).to(device)
# Add a batch dimension using '.unsqueeze(0)'
encoded = clip_model.encode_image(preprocessed.unsqueeze(0))
text = model(encoded)

print(text)
# Probably some nonsense, because we used a dummy image.

Pretrained Models

A pretrained CLIP decoder is hosted in my Google Drive, and can easily be downloaded by:

from clip_text_decoder.model import ClipDecoderInferenceModel

model = ClipDecoderInferenceModel.download_pretrained()

To cache the pretrained model locally, so that it's not re-downloaded each time:

model = ClipDecoderInferenceModel.download_pretrained("/path/to/model.zip")

Shortcomings

  • Only works well with COCO-style images. If you go outside the distribution of COCO objects, you'll get nonsense text captions.
  • Relatively short training time. Even within the COCO domain, you'll occasionally see incorrect captions. Quite a few captions will have bad grammar, repetitive descriptors, etc.
Comments
  • Decoding Text Embeddings Coded Using Hugging Face ClipTextModel

    Decoding Text Embeddings Coded Using Hugging Face ClipTextModel

    Suppose that I have text embeddings created using Hugging Face's ClipTextModel using the following method:

    import torch
    from transformers import CLIPTokenizer, CLIPTextModel
    
    class_list = ["i love going home and playing with my wife and kids", "i love going home", "playing with my wife and kids", 
    "family", "war", "writing"]
    
    model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
    tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
    
    inputs = tokenizer(class_list, padding=True, return_tensors="pt")
    outputs = model(**inputs)
    hidden_state = outputs.last_hidden_state
    embeddings = outputs.pooler_output
    

    Questions:

    1. Is It possible to use the clip-text-decoder to convert the embeddings back to text?
    2. If it is indeed possible to do so, could you provide an example of how?

    Looking forward to receiving your feedback.

    opened by mbdzi 6
  • Fix string error when loading clip models.

    Fix string error when loading clip models.

    error

    The model name string ( VIT-xxx ) in the check_vision_backbone function is not compatible with the model name string ( ViT-xxx ) of the clip repository, which will cause at least one error in check_vision_backbone function or when loading the clip model.

    solution

    In this PR, the model name string in the check_vision_backbone function is modified to ViT-xxx to make it compatible with the clip repository.

    opened by Adenialzz 1
  • BLIP vision backbone

    BLIP vision backbone

    • Added blip backbone; still cleaning up last pieces
    • Bug fixes for training script, and remove debug code.
    • Fix dependencies in test workflow; update README statistics
    • Fix test issue with CUDA device
    • Update unit tests for newer Python, torch versions
    • Test up to Python 3.10
    • Test up to Python 3.9
    • Install lavis first
    opened by fkodom 0
  • Feature: Beam Search

    Feature: Beam Search

    • Add beam search, clip dependency to setup.py
    • Fix installation instructions
    • Remove main clause
    • Add '--beam-size' option to 'train.py' script.
    • Update README; propagate the '--beam-size' arg through eval functions
    • Update setup.cfg, add pre-commit hooks
    • Reformat images
    • Remove fixed image width
    • Add detail to README; comments to call method for beam search
    • Updated README headline
    opened by fkodom 0
  • Bug Fixes for Broken Tests

    Bug Fixes for Broken Tests

    • Cache the old fashioned way :)
    • Fix silly typo in test for image caption model
    • Apply black and isort formatting
    • Install latest version of 'black', reapply formatting
    • Fix flake8 issue (duplicate function definition), and install latest patch version of pytorch for tests.
    • Skip slow tests by default, add 'slow' marker to inference model tests.
    opened by fkodom 0
  • GPT2 Decoder

    GPT2 Decoder

    • Update model to use DistilGPT2 as a pre-trained decoder.
    • Removed tokenizer (no longer used), fixed bugs in Model source file, and updated model unit tests.
    • Backwards compatibility for 'gdown.download' method.
    • Update installation requirements, caption examples in README
    opened by fkodom 0
  • Upgrade CodeSee workflow to version 2

    Upgrade CodeSee workflow to version 2

    CodeSee is a code visibility platform.

    This change updates the CodeSee workflow file to the latest version for security, maintenance, and support improvements (see changelog below).

    That workflow file:

    • runs CodeSee's code analysis on every PR push and merge
    • uploads that analysis to CodeSee.
    • It does not transmit your code.

    The code analysis is used to generate maps and insights about this codebase.

    CodeSee workflow changelog:

    • Improved security: Updates permission to be read-only.
    • Improved future maintenance: Replaces the body of the workflow with a single github action: codesee-action. This makes it significantly easier for CodeSee to introduce future improvements and fixes without requiring another PR like this.
    • Improved Python support: The action now properly supports Python 3.11, and will continue to support new Python versions as they are released.
    opened by codesee-maps[bot] 1
  • Incompatible checksum error

    Incompatible checksum error

    I see the following error when trying to load the pretrained model.

        tokenizer=pickle.loads(tokenizer_buffer.read()),
      File "stringsource", line 6, in spacy.pipeline.trainable_pipe.__pyx_unpickle_TrainablePipe
    _pickle.PickleError: Incompatible checksums (102742709 vs 0x417ddeb = (cfg, model, name, vocab))
    

    Am I missing something?

    opened by dapurv5 0
Releases(1.4.4)
  • 1.4.4(Nov 7, 2022)

    What's Changed

    • Fix string error when loading clip models. by @Adenialzz in https://github.com/fkodom/clip-text-decoder/pull/12

    New Contributors

    • @Adenialzz made their first contribution in https://github.com/fkodom/clip-text-decoder/pull/12

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.4.3...1.4.4

    Source code(tar.gz)
    Source code(zip)
  • 1.4.3(Nov 7, 2022)

    What's Changed

    • Refactor Dataset by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/11

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.4.2...1.4.3

    Source code(tar.gz)
    Source code(zip)
  • 1.4.2(Oct 26, 2022)

    What's Changed

    • Huggingface Evaluate by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/9

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.4.1...1.4.2

    Source code(tar.gz)
    Source code(zip)
  • 1.4.1(Oct 26, 2022)

    What's Changed

    • Datapipes by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/8

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.4.0...1.4.1

    Source code(tar.gz)
    Source code(zip)
  • 1.4.0(Oct 23, 2022)

    What's Changed

    • BLIP vision backbone by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/7

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.3.0...1.4.0

    Source code(tar.gz)
    Source code(zip)
  • 1.3.0(Oct 2, 2022)

    What's Changed

    • Feature: Beam Search by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/5
    • Bug Fix: PyPI Release by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/6

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.2.0...1.3.0

    Source code(tar.gz)
    Source code(zip)
  • 1.2.0(Jan 29, 2022)

    What's Changed

    • Cache CLIP embeddings for the dataset, rather than recomputing them each time.

    • Reduce model file sizes by storing at lower precision

    • Add an ImageCaptionInferenceModel class for easier out-of-the-box use

    • Fix some broken unit tests

    • Better Data Caching by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/3

    • Bug Fixes for Broken Tests by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/4

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.1.0...1.2.0

    Source code(tar.gz)
    Source code(zip)
  • 1.1.0(Dec 22, 2021)

    What's Changed

    • GPT2 Decoder by @fkodom in https://github.com/fkodom/clip-text-decoder/pull/2

    New Contributors

    • @fkodom made their first contribution in https://github.com/fkodom/clip-text-decoder/pull/2

    Full Changelog: https://github.com/fkodom/clip-text-decoder/compare/1.0.0...1.1.0

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Nov 14, 2021)

  • 0.1.0(Nov 14, 2021)

Owner
Frank Odom
Director of Innovation at Plainsight. I like neural nets, and neural nets like me.
Frank Odom
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022