BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

Overview

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting

Updated on December 10, 2021 (Release all dataset(2021 videos))

Updated on June 06, 2021 (Added evaluation metric)

Released on May 26, 2021

Description

YouTube Demo | Homepage | Downloads(Google Drive) Downloads(Baidu Drive)(password:go10) | Paper

We create a new large-scale benchmark dataset named Bilingual, Open World Video Text(BOVText), the first large-scale and multilingual benchmark for video text spotting in a variety of scenarios. All data are collected from KuaiShou and YouTube

There are mainly three features for BOVText:

  • Large-Scale: we provide 2,000+ videos with more than 1,750,000 frame images, four times larger than the existing largest dataset for text in videos.
  • Open Scenario:BOVText covers 30+ open categories with a wide selection of various scenarios, e.g., life vlog, sports news, automatic drive, cartoon, etc. Besides, caption text and scene text are separately tagged for the two different representational meanings in the video. The former represents more theme information, and the latter is the scene information.
  • Bilingual:BOVText provides Bilingual text annotation to promote multiple cultures live and communication.

Tasks and Metrics

The proposed BOVText support four task(text detection, recognition, tracking, spotting), but mainly includes two tasks:

  • Video Frames Detection.
  • Video Frames Recognition.
  • Video Text Tracking.
  • End to End Text Spotting in Videos.

MOTP (Multiple Object Tracking Precision)[1], MOTA (Multiple Object Tracking Accuracy) and IDF1[3,4] as the three important metrics are used to evaluate task1 (text tracking) for MMVText. In particular, we make use of the publicly available py-motmetrics library (https://github.com/cheind/py-motmetrics) for the establishment of the evaluation metric.

Word recognition evaluation is case-insensitive, and accent-insensitive. The transcription '###' or "#1" is special, as it is used to define text areas that are unreadable. During the evaluation, such areas will not be taken into account: a method will not be penalised if it does not detect these words, while a method that detects them will not get any better score.

Task 3 for Text Tracking Evaluation

The objective of this task is to obtain the location of words in the video in terms of their affine bounding boxes. The task requires that words are both localised correctly in every frame and tracked correctly over the video sequence. Please output the json file as following:

Output
.
├-Cls10_Program_Cls10_Program_video11.json
│-Cls10_Program_Cls10_Program_video12.json
│-Cls10_Program_Cls10_Program_video13.json
├-Cls10_Program_Cls10_Program_video14.json
│-Cls10_Program_Cls10_Program_video15.json
│-Cls10_Program_Cls10_Program_video16.json
│-Cls11_Movie_Cls11_Movie_video17.json
│-Cls11_Movie_Cls11_Movie_video18.json
│-Cls11_Movie_Cls11_Movie_video19.json
│-Cls11_Movie_Cls11_Movie_video20.json
│-Cls11_Movie_Cls11_Movie_video21.json
│-...


And then cd Evaluation_Protocol/Task1_VideoTextTracking, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Task 4 for Text Spotting Evaluation

Please output the json file like task 3.

cd Evaluation_Protocol/Task2_VideoTextSpotting, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Ground Truth (GT) Format and Downloads

We create a single JSON file for each video in the dataset to store the ground truth in a structured format, following the naming convention: gt_[frame_id], where frame_id refers to the index of the video frame in the video

In a JSON file, each gt_[frame_id] corresponds to a list, where each line in the list correspond to one word in the image and gives its bounding box coordinates, transcription, text type(caption or scene text) and tracking ID, in the following format:

{

“frame_1”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

“frame_2”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

……

}

Downloads

Training data and the test set can be found from Downloads(Google Drive) Downloads(Baidu Drive)(password:go10).

Table Ranking

Important Announcements: we expand the data size from 1,850 videos to 2,021 videos, causing the performance difference between arxiv paper and the NeurIPS version. Therefore, please refer to the latest arXiv paper, while existing ambiguity.

</tbody>
Method Text Tracking Performance/% End to End Video Text Spotting/% Published at
MOTA MOTP IDP IDR IDF1 MOTA MOTP IDP IDR IDF1
EAST+CRNN -21.6 75.8 29.9 26.5 28.1 -79.3 76.3 6.8 6.9 6.8 -
TransVTSpotter 68.2 82.1 71.0 59.7 64.7 -1.4 82.0 43.6 38.4 40.8 -

Maintenance Plan and Goal

The author will plays an active participant in the video text field and maintaining the dataset at least before 2023 years. And the maintenance plan as the following:

  • Merging and releasing the whole dataset after further review. (Around before November, 2021)
  • Updating evaluation guidance and script code for four tasks(detection, tracking, recognition, and spotting). (Around before November, 2021)
  • Hosting a competition concerning our work for promotional and publicity. (Around before March,2022)

More video-and-language tasks will be supported in our dataset:

  • Text-based Video Retrieval[5] (Around before March,2022)
  • Text-based Video Caption[6] (Around before September,2022)
  • Text-based VQA[7][8] (TED)

TodoList

  • update evaluation metric
  • update data and annotation link
  • update evaluation guidance
  • update Baseline(TransVTSpotter)
  • ...

Citation

@article{wu2021opentext,
  title={A Bilingual, OpenWorld Video Text Dataset and End-to-end Video Text Spotter with Transformer},
  author={Weijia Wu, Debing Zhang, Yuanqiang Cai, Sibo Wang, Jiahong Li, Zhuang Li, Yejun Tang, Hong Zhou},
  journal={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}

Organization

Affiliations: Zhejiang University, MMU of Kuaishou Technology

Authors: Weijia Wu(Zhejiang University), Debing Zhang(Kuaishou Technology)

Feedback

Suggestions and opinions of this dataset (both positive and negative) are greatly welcome. Please contact the authors by sending email to [email protected].

License and Copyright

The project is open source under CC-by 4.0 license (see the LICENSE file).

Only for research purpose usage, it is not allowed for commercial purpose usage.

The videos were partially downloaded from YouTube and some may be subject to copyright. We don't own the copyright of those videos and only provide them for non-commercial research purposes only. For each video from YouTube, while we tried to identify video that are licensed under a Creative Commons Attribution license, we make no representations or warranties regarding the license status of each video and you should verify the license for each image yourself.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 License.

References

[1] Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixe, L. (2019). CVPR19 Tracking and Detection Challenge: How crowded can it get?. arXiv preprint arXiv:1906.04567.

[2] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.

[3] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.

[4] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.

[5] Anand Mishra, Karteek Alahari, and CV Jawahar. Image retrieval using textual cues. In Proceedings of the IEEE International Conference on Computer Vision, pages 3040–3047, 2013.

[6] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for image captioning with reading comprehension. In European Conference on Computer Vision, pages 742–758. Springer, 2020.

[7] Minesh Mathew, Dimosthenis Karatzas, C. V. Jawahar, "DocVQA: A Dataset for VQA on Document Images", arXiv:2007.00398 [cs.CV], WACV 2021

[8] Minesh Mathew, Ruben Tito, Dimosthenis Karatzas, R. Manmatha, C.V. Jawahar, "Document Visual Question Answering Challenge 2020", arXiv:2008.08899 [cs.CV], DAS 2020

Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022