Facilitates implementing deep neural-network backbones, data augmentations

Overview

Introduction

Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common way was to find a repo and reimplement them. Thus, it is really hard for them to speed up the implementation of a big project in which requires a continuous try-end-error process to find the best model. general_backbone is launched to facilitate for implementation of deep neural-network backbones, data augmentations, optimizers, and learning schedulers that all in one package. Finally, you can quick-win the training process. Below are these supported sectors in the current version:

  • backbones
  • loss functions
  • augumentation styles
  • optimizers
  • schedulers
  • data types
  • visualizations

Installation

Refer to docs/installation.md for installion of general_backbone package.

Model backbone

Currently, general_backbone supports more than 70 type of resnet models such as: resnet18, resnet34, resnet50, resnet101, resnet152, resnext50.

All models is supported can be found in general_backbone.list_models() function:

import general_backbone
general_backbone.list_models()

Results

{'resnet': ['resnet18', 'resnet18d', 'resnet34', 'resnet34d', 'resnet26', 'resnet26d', 'resnet26t', 'resnet50', 'resnet50d', 'resnet50t', 'resnet101', 'resnet101d', 'resnet152', 'resnet152d', 'resnet200', 'resnet200d', 'tv_resnet34', 'tv_resnet50', 'tv_resnet101', 'tv_resnet152', 'wide_resnet50_2', 'wide_resnet101_2', 'resnext50_32x4d', 'resnext50d_32x4d', 'resnext101_32x4d', 'resnext101_32x8d', 'resnext101_64x4d', 'tv_resnext50_32x4d', 'ig_resnext101_32x8d', 'ig_resnext101_32x16d', 'ig_resnext101_32x32d', 'ig_resnext101_32x48d', 'ssl_resnet18', 'ssl_resnet50', 'ssl_resnext50_32x4d', 'ssl_resnext101_32x4d', 'ssl_resnext101_32x8d', 'ssl_resnext101_32x16d', 'swsl_resnet18', 'swsl_resnet50', 'swsl_resnext50_32x4d', 'swsl_resnext101_32x4d', 'swsl_resnext101_32x8d', 'swsl_resnext101_32x16d', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet50t', 'seresnet101', 'seresnet152', 'seresnet152d', 'seresnet200d', 'seresnet269d', 'seresnext26d_32x4d', 'seresnext26t_32x4d', 'seresnext50_32x4d', 'seresnext101_32x4d', 'seresnext101_32x8d', 'senet154', 'ecaresnet26t', 'ecaresnetlight', 'ecaresnet50d', 'ecaresnet50d_pruned', 'ecaresnet50t', 'ecaresnet101d', 'ecaresnet101d_pruned', 'ecaresnet200d', 'ecaresnet269d', 'ecaresnext26t_32x4d', 'ecaresnext50t_32x4d', 'resnetblur18', 'resnetblur50', 'resnetrs50', 'resnetrs101', 'resnetrs152', 'resnetrs200', 'resnetrs270', 'resnetrs350', 'resnetrs420']}

To select your backbone type, you set model=resnet50 in train_config of your config file. An example config file general_backbone/configs/image_clf_config.py.

Dataset

A toy dataset is provided at toydata for your test training. It has a structure organized as below:

toydata/
└── image_classification
    ├── test
    │   ├── cat
    │   └── dog
    └── train
        ├── cat
        └── dog

Inside each folder cat and dog is the images. If you want to add a new class, you just need to create a new folder with the folder's name is label name inside train and test folder.

Data Augmentation

general_backbone package support many augmentations style for training. It is efficient and important to improve model accuracy. Some of common augumentations is below:

Augumentation Style Parameters Description
Pixel-level transforms
Blur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a random-sized kernel
GaussNoise {'var_limit':(10.0, 50.0), 'mean':0, 'per_channel':True, 'always_apply':False, 'p':0.5} Apply gaussian noise to the input image
GaussianBlur {'blur_limit':(3, 7), 'sigma_limit':0, 'always_apply':False, 'p':0.5} Blur the input image using a Gaussian filter with a random kernel size
GlassBlur {'sigma': 0.7, 'max_delta':4, 'iterations':2, 'always_apply':False, 'mode':'fast', 'p':0.5} Apply glass noise to the input image
HueSaturationValue {'hue_shift_limit':20, 'sat_shift_limit':30, 'val_shift_limit':20, 'always_apply':False, 'p':0.5} Randomly change hue, saturation and value of the input image
MedianBlur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a median filter with a random aperture linear size
RGBShift {'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5} Randomly shift values for each channel of the input RGB image.
Normalize {'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)} Normalization is applied by the formula: img = (img - mean * max_pixel_value) / (std * max_pixel_value)
Spatial-level transforms
RandomCrop {'height':128, 'width':128} Crop a random part of the input
VerticalFlip {'p': 0.5} Flip the input vertically around the x-axis
ShiftScaleRotate {'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5} Randomly apply affine transforms: translate, scale and rotate the input
RandomBrightnessContrast {'brightness_limit':0.2, 'contrast_limit':0.2, 'brightness_by_max':True, 'always_apply':False,'p': 0.5} Randomly change brightness and contrast of the input image

Augumentation is configured in the configuration file general_backbone/configs/image_clf_config.py:

data_conf = dict(
    dict_transform = dict(
        SmallestMaxSize={'max_size': 160},
        ShiftScaleRotate={'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5},
        RandomCrop={'height':128, 'width':128},
        RGBShift={'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5},
        RandomBrightnessContrast={'p': 0.5},
        Normalize={'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)},
        ToTensorV2={'always_apply':True}
    )
)

You can add a new transformation step in data_conf['dict_transform'] and they are transformed in order from top-down. You can also debug your transformation by setup debug=True:

from general_backbone.data import AugmentationDataset
augdataset = AugmentationDataset(data_dir='toydata/image_classification',
                            name_split='train',
                            config_file = 'general_backbone/configs/image_clf_config.py', 
                            dict_transform=None, 
                            input_size=(256, 256), 
                            debug=True, 
                            dir_debug = 'tmp/alb_img_debug', 
                            class_2_idx=None)

for i in range(50):
    img, label = augdataset.__getitem__(i)

In default, the augmentation images output is saved in tmp/alb_img_debug to you review before train your models. the code tests augmentation image is available in debug/transform_debug.py:

conda activate gen_backbone
python debug/transform_debug.py

Train model

To train model, you run file tools/train.py. There are variaty of config for your training such as --model, --batch_size, --opt, --loss, --sched. We supply to you a standard configuration file to train your model through --config. general_backbone/configs/image_clf_config.py is for image classification task. You can change value inside this file or add new parameter as you want but without changing the name and structure of file.

python3 tools/train.py --config general_backbone/configs/image_clf_config.py

Results:

Model resnet50 created, param count:25557032
Train: 0 [   0/33 (  0%)]  Loss: 8.863 (8.86)  Time: 1.663s,    9.62/s  (1.663s,    9.62/s)  LR: 5.000e-04  Data: 0.460 (0.460)
Train: 0 [  32/33 (100%)]  Loss: 1.336 (4.00)  Time: 0.934s,    8.57/s  (0.218s,   36.68/s)  LR: 5.000e-04  Data: 0.000 (0.014)
Test: [   0/29]  Time: 0.560 (0.560)  Loss:  0.6912 (0.6912)  [email protected]: 87.5000 (87.5000)  [email protected]: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.041 (0.064)  Loss:  0.5951 (0.5882)  [email protected]: 81.2500 (87.5000)  [email protected]: 100.0000 (99.3750)
Train: 1 [   0/33 (  0%)]  Loss: 0.5741 (0.574)  Time: 0.645s,   24.82/s  (0.645s,   24.82/s)  LR: 5.000e-04  Data: 0.477 (0.477)
Train: 1 [  32/33 (100%)]  Loss: 0.5411 (0.313)  Time: 0.089s,   90.32/s  (0.166s,   48.17/s)  LR: 5.000e-04  Data: 0.000 (0.016)
Test: [   0/29]  Time: 0.537 (0.537)  Loss:  0.3071 (0.3071)  [email protected]: 87.5000 (87.5000)  [email protected]: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.043 (0.066)  Loss:  0.1036 (0.1876)  [email protected]: 100.0000 (93.9583)  [email protected]: 100.0000 (100.0000)

Table of config parameters is in training.

Your model checkpoint and log are saved in the same path of --output directory. A tensorboard visualization is created in order to facilitate manage and control training process. As default, folder of tensorboard is runs that insides --output. The loss, accuracy, learning rate and batch time on both train and test are logged:

tensorboard --logdir checkpoint/resnet50/20211023-092651-resnet50-224/runs/

Inference

To inference model, you can pass relevant values to --img, --config and --initial-checkpoint.

python tools/inference.py --img demo/cat0.jpg --config general_backbone/configs/image_clf_config.py --initial-checkpoint checkpoint.pth.tar

TODO

Packages reference:

There are many open sources package we refered to build up general_backbone:

  • timm: PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

  • albumentations: is a Python library for image augmentation.

  • mmcv: MMCV is a foundational library for computer vision research and supports many research projects.

Citation

If you find this project is useful in your reasearch, kindly consider cite:

@article{genearal_backbone,
    title={GeneralBackbone:  A handy package for implementing Deep Learning Backbone},
    author={khanhphamdinh},
    email= {[email protected]},
    year={2021}
}
You might also like...
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Releases(v0.2.1)
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022