The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Overview

Fake News Detection

Overview

The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news. However, it is difficult to understand how deep learning models make decisions on what is fake or real news, and furthermore these models are vulnerable to adversarial attacks. In this project, we test the resilience of a fake news detector against a set of adversarial attacks. Our results indicate that a deep learning model remains vulnerable to adversarial attacks, but also is alarmingly vulnerable to the use of generic attacks: the inclusion of certain sequences of text whose inclusion into nearly any text sample can cause it to be misclassified. We explore how this set of generic attacks against text classifiers can be detected, and explore how future models can be made more resilient against these attacks.

Dataset Description

Our fake news model and dataset are taken from this github repo.

  • train.csv: A full training dataset with the following attributes:

    • id: unique id for a news article
    • title: the title of a news article
    • author: author of the news article
    • text: the text of the article; could be incomplete
    • label: a label that marks the article as potentially unreliable
      • 1: unreliable
      • 0: reliable
  • test.csv: A testing training dataset with all the same attributes at train.csv without the label.

Adversarial Text Generation

It's difficult to generate adversarial samples when working with text, which is discrete. A workaround, proposed by J. Gao et al. has been to create small text perturbations, like misspelled words, to create a black-box attack on text classification models. Another method taken by N. Papernot has been to find the gradient based off of the word embeddings of sample text. Our approach uses the algorithm proposed by Papernot to generate our adversarial samples. While Gao’s method is extremely effective, with little to no modification of the meaning of the text samples, we decided to see if we could create valid adversarial samples by changing the content of the words, instead of their text.

Methodology

Our original goal was to create a model that could mutate text samples so that they would be misclassified by the model. We accomplished this by implementing the algorithm set out by Papernot in Crafting Adversarial Input Sequences. The proposed algorithm generates a white-box adversarial example based on the model’s Jacobian matrix. Random words from the original text sample are mutated. These mutations are determined by finding a word in the embedding where the sign of the difference between the original word and the new word are closest to the sign of the Jacobian of the original word. The resulting words have an embedding direction that most closely resemble the direction indicated as being most impactful according to the model’s Jacobian.

A fake news text sample modified to be classified as reliable is shown below:

Council of Elders Intended to Set Up Anti-ISIS Coalition by Jason Ditz, October said 31, 2016 Share This ISIS has killed a number of Afghan tribal elders and wounded several more in Nangarhar Province’s main city of Jalalabad today, with a suicide bomber from the group targeting a meeting of the council of elders in the city. The details are still scant, but ISIS claims that the council was established in part to discuss the formation of a tribal anti-ISIS coalition in the area. They claimed 15 killed and 25 wounded, labeling the victims “apostates.” Afghan 000 government officials put the toll a lot lower, saying only four were killed and seven mr wounded in the attack. Nangarhar is the main base of operations for ISIS forces in Afghanistan, though they’ve recently begun to pop up around several other provinces. Whether the council was at the point of establishing an anti-ISIS coalition or not, this is in keeping with the group mr's reaction to any sign of growing local resistance, with ISIS having similarly made an example of tribal groups in Iraq and Syria during their establishment there. Last 5 posts by Jason Ditz

We also discovered a phenomena where adding certain sequences of text to samples would cause them to be misclassified without needing to make any additional modifications to the original text. To discover additional sequences, we took three different approaches: generating sequences based on the sentiments of the word bank, using Papernot’s algorithm to append new sequences, and creating sequences by hand.

Modified Papernot

Papernot’s original algorithm had been trained to mutate existing words in an input text to generate the adversarial text. However, our LSTM model pads the input, leaving spaces for blank words when the input length is small enough. We modify Papernot’s algorithm to mutate on two “blank” words at the end of our input sequence. This will generate new sequences of text that can then be applied to other samples, to see if they can serve as generic attacks.

The modified Papernot algorithm generated two-word sequences of the words ‘000’, ‘said’, and ‘mr’ in various orders, closely resembling the word substitutions created by the baseline Papernot algorithm. It can be expected that the modified Papernot will still use words identified by the baseline method, given that both models rely on the model’s Jacobian matrix when selecting replacement words. When tested against all unreliable samples, sequences generated are able to shift the model’s confidence to inaccurately classify a majority of samples as reliable instead.

Handcraft

Our simplest approach to the generation was to manually look for sequences of text by hand. This involved looking at how the model had performed on the training set, how confident it was on certain samples, and looking for patterns in samples that had been misclassified. We tried to rely on patterns that appear to a human observer to be innocuous, but also explored other patterns that would change the meaning of the text in significant ways.

Methodology Sample Sequence False Discovery Rate
Papernot mr 000 0.37%
Papernot said mr 29.74%
Handcraft follow twitter 26.87%
Handcraft nytimes com 1.70%

Conclusion

One major issue with the deployment of deep learning models is that "the ease with which we can switch between any two decisions in targeted attacks is still far from being understood." It is primarily on this basis that we are skeptical of machine learning methods. We believe that there should be greater emphasis placed on identifying the set of misclassified text samples when evaluating the performance of fake news detectors. If seemingly minute perturbations in the text can change the entire classification of the sample, it is likely that these weaknesses will be found by fake news distributors, where the cost of producing fake news is cheaper than the cost of detecting it.

Our project also led to the discovery of the existence of a set of sequences that could be applied to nearly any text sample to then be misclassified by the model, resembling generic attacks from the cryptography field. We proposed a modification of Papernot’s Jacobian-based adversarial attack to automatically identify these sequences. However, some of these generated sequences do not feel natural to the human eye, and future work can be placed into improving their generation. For now, while the eyes of a machine may be tricked by our samples, the eyes of a human can still spot the differences.

References

Owner
Kushal Shingote
Android Developer📱📱 iOS Apps📱📱 Swift | Xcode | SwiftUI iOS Swift development📱 Kotlin Application📱📱 iOS📱 Artificial Intelligence 💻 Data science
Kushal Shingote
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
PyTranslator é simultaneamente um editor e tradutor de texto com diversos recursos e interface feito com coração e 100% em Python

PyTranslator O Que é e para que serve o PyTranslator? PyTranslator é simultaneamente um editor e tradutor de texto em com interface gráfica que usa a

Elizeu Barbosa Abreu 1 May 12, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode

Rachel Zheng 14 Nov 01, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022