SpikeX - SpaCy Pipes for Knowledge Extraction

Overview

SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Build Status pypi Version Code style: black

What's new in SpikeX 0.5.0

WikiGraph has never been so lightning fast:

  • 🌕 Performance mooning, thanks to the adoption of a sparse adjacency matrix to handle pages graph, instead of using igraph
  • 🚀 Memory optimization, with a consumption cut by ~40% and a compressed size cut by ~20%, introducing new bidirectional dictionaries to manage data
  • 📖 New APIs for a faster and easier usage and interaction
  • 🛠 Overall fixes, for a better graph and a better pages matching

Pipes

  • WikiPageX links Wikipedia pages to chunks in text
  • ClusterX picks noun chunks in a text and clusters them based on a revisiting of the Ball Mapper algorithm, Radial Ball Mapper
  • AbbrX detects abbreviations and acronyms, linking them to their long form. It is based on scispacy's one with improvements
  • LabelX takes labelings of pattern matching expressions and catches them in a text, solving overlappings, abbreviations and acronyms
  • PhraseX creates a Doc's underscore extension based on a custom attribute name and phrase patterns. Examples are NounPhraseX and VerbPhraseX, which extract noun phrases and verb phrases, respectively
  • SentX detects sentences in a text, based on Splitta with refinements

Tools

  • WikiGraph with pages as leaves linked to categories as nodes
  • Matcher that inherits its interface from the spaCy's one, but built using an engine made of RegEx which boosts its performance

Install SpikeX

Some requirements are inherited from spaCy:

  • spaCy version: 2.3+
  • Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
  • Python version: Python 3.6+ (only 64 bit)
  • Package managers: pip

Some dependencies use Cython and it needs to be installed before SpikeX:

pip install cython

Remember that a virtual environment is always recommended, in order to avoid modifying system state.

pip

At this point, installing SpikeX via pip is a one line command:

pip install spikex

Usage

Prerequirements

SpikeX pipes work with spaCy, hence a model its needed to be installed. Follow official instructions here. The brand new spaCy 3.0 is supported!

WikiGraph

A WikiGraph is built starting from some key components of Wikipedia: pages, categories and relations between them.

Auto

Creating a WikiGraph can take time, depending on how large is its Wikipedia dump. For this reason, we provide wikigraphs ready to be used:

Date WikiGraph Lang Size (compressed) Size (memory)
2021-04-01 enwiki_core EN 1.1GB 5.9GB
2021-04-01 simplewiki_core EN 19MB 120MB
2021-04-01 itwiki_core IT 189MB 1.1GB
More coming...

SpikeX provides a command to shortcut downloading and installing a WikiGraph (Linux or macOS, Windows not supported yet):

spikex download-wikigraph simplewiki_core

Manual

A WikiGraph can be created from command line, specifying which Wikipedia dump to take and where to save it:

spikex create-wikigraph \
  <YOUR-OUTPUT-PATH> \
  --wiki <WIKI-NAME, default: en> \
  --version <DUMP-VERSION, default: latest> \
  --dumps-path <DUMPS-BACKUP-PATH> \

Then it needs to be packed and installed:

spikex package-wikigraph \
  <WIKIGRAPH-RAW-PATH> \
  <YOUR-OUTPUT-PATH>

Follow the instructions at the end of the packing process and install the distribution package in your virtual environment. Now your are ready to use your WikiGraph as you wish:

from spikex.wikigraph import load as wg_load

wg = wg_load("enwiki_core")
page = "Natural_language_processing"
categories = wg.get_categories(page, distance=1)
for category in categories:
    print(category)

>>> Category:Speech_recognition
>>> Category:Artificial_intelligence
>>> Category:Natural_language_processing
>>> Category:Computational_linguistics

Matcher

The Matcher is identical to the spaCy's one, but faster when it comes to handle many patterns at once (order of thousands), so follow official usage instructions here.

A trivial example:

from spikex.matcher import Matcher
from spacy import load as spacy_load

nlp = spacy_load("en_core_web_sm")
matcher = Matcher(nlp.vocab)
matcher.add("TEST", [[{"LOWER": "nlp"}]])
doc = nlp("I love NLP")
for _, s, e in matcher(doc):
  print(doc[s: e])

>>> NLP

WikiPageX

The WikiPageX pipe uses a WikiGraph in order to find chunks in a text that match Wikipedia page titles.

from spacy import load as spacy_load
from spikex.wikigraph import load as wg_load
from spikex.pipes import WikiPageX

nlp = spacy_load("en_core_web_sm")
doc = nlp("An apple a day keeps the doctor away")
wg = wg_load("simplewiki_core")
wpx = WikiPageX(wg)
doc = wpx(doc)
for span in doc._.wiki_spans:
  print(span._.wiki_pages)

>>> ['An']
>>> ['Apple', 'Apple_(disambiguation)', 'Apple_(company)', 'Apple_(tree)']
>>> ['A', 'A_(musical_note)', 'A_(New_York_City_Subway_service)', 'A_(disambiguation)', 'A_(Cyrillic)')]
>>> ['Day']
>>> ['The_Doctor', 'The_Doctor_(Doctor_Who)', 'The_Doctor_(Star_Trek)', 'The_Doctor_(disambiguation)']
>>> ['The']
>>> ['Doctor_(Doctor_Who)', 'Doctor_(Star_Trek)', 'Doctor', 'Doctor_(title)', 'Doctor_(disambiguation)']

ClusterX

The ClusterX pipe takes noun chunks in a text and clusters them using a Radial Ball Mapper algorithm.

from spacy import load as spacy_load
from spikex.pipes import ClusterX

nlp = spacy_load("en_core_web_sm")
doc = nlp("Grab this juicy orange and watch a dog chasing a cat.")
clusterx = ClusterX(min_score=0.65)
doc = clusterx(doc)
for cluster in doc._.cluster_chunks:
  print(cluster)

>>> [this juicy orange]
>>> [a cat, a dog]

AbbrX

The AbbrX pipe finds abbreviations and acronyms in the text, linking short and long forms together:

from spacy import load as spacy_load
from spikex.pipes import AbbrX

nlp = spacy_load("en_core_web_sm")
doc = nlp("a little snippet with an abbreviation (abbr)")
abbrx = AbbrX(nlp.vocab)
doc = abbrx(doc)
for abbr in doc._.abbrs:
  print(abbr, "->", abbr._.long_form)

>>> abbr -> abbreviation

LabelX

The LabelX pipe matches and labels patterns in text, solving overlappings, abbreviations and acronyms.

from spacy import load as spacy_load
from spikex.pipes import LabelX

nlp = spacy_load("en_core_web_sm")
doc = nlp("looking for a computer system engineer")
patterns = [
  [{"LOWER": "computer"}, {"LOWER": "system"}],
  [{"LOWER": "system"}, {"LOWER": "engineer"}],
]
labelx = LabelX(nlp.vocab, ("TEST", patterns), validate=True, only_longest=True)
doc = labelx(doc)
for labeling in doc._.labelings:
  print(labeling, f"[{labeling.label_}]")

>>> computer system engineer [TEST]

PhraseX

The PhraseX pipe creates a custom Doc's underscore extension which fulfills with matches from phrase patterns.

from spacy import load as spacy_load
from spikex.pipes import PhraseX

nlp = spacy_load("en_core_web_sm")
doc = nlp("I have Melrose and McIntosh apples, or Williams pears")
patterns = [
  [{"LOWER": "mcintosh"}],
  [{"LOWER": "melrose"}],
]
phrasex = PhraseX(nlp.vocab, "apples", patterns)
doc = phrasex(doc)
for apple in doc._.apples:
  print(apple)

>>> Melrose
>>> McIntosh

SentX

The SentX pipe splits sentences in a text. It modifies tokens' is_sent_start attribute, so it's mandatory to add it before parser pipe in the spaCy pipeline:

from spacy import load as spacy_load
from spikex.pipes import SentX
from spikex.defaults import spacy_version

if spacy_version >= 3:
  from spacy.language import Language

    @Language.factory("sentx")
    def create_sentx(nlp, name):
        return SentX()

nlp = spacy_load("en_core_web_sm")
sentx_pipe = SentX() if spacy_version < 3 else "sentx"
nlp.add_pipe(sentx_pipe, before="parser")
doc = nlp("A little sentence. Followed by another one.")
for sent in doc.sents:
  print(sent)

>>> A little sentence.
>>> Followed by another one.

That's all folks

Feel free to contribute and have fun!

Owner
Erre Quadro Srl
Erre Quadro Srl
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022