Application of the L2HMC algorithm to simulations in lattice QCD.

Overview

l2hmc-qcd CodeFactor

πŸ“Š Slides

πŸ“’ Example Notebook


Overview

The L2HMC algorithm aims to improve upon HMC by optimizing a carefully chosen loss function which is designed to minimize autocorrelations within the Markov Chain, thereby improving the efficiency of the sampler.

This work is based on the original implementation: brain-research/l2hmc/.

A detailed description of the L2HMC algorithm can be found in the paper:

Generalizing Hamiltonian Monte Carlo with Neural Network

by Daniel Levy, Matt D. Hoffman and Jascha Sohl-Dickstein.

Broadly, given an analytically described target distribution, Ο€(x), L2HMC provides a statistically exact sampler that:

  • Quickly converges to the target distribution (fast burn-in).
  • Quickly produces uncorrelated samples (fast mixing).
  • Is able to efficiently mix between energy levels.
  • Is capable of traversing low-density zones to mix between modes (often difficult for generic HMC).

L2HMC for LatticeQCD

Goal: Use L2HMC to efficiently generate gauge configurations for calculating observables in lattice QCD.

A detailed description of the (ongoing) work to apply this algorithm to simulations in lattice QCD (specifically, a 2D U(1) lattice gauge theory model) can be found in doc/main.pdf.

l2hmc-qcd poster

Organization

Dynamics / Network

The base class for the augmented L2HMC leapfrog integrator is implemented in the BaseDynamics (a tf.keras.Model object).

The GaugeDynamics is a subclass of BaseDynamics containing modifications for the 2D U(1) pure gauge theory.

The network is defined in l2hmc-qcd/network/functional_net.py.

Network Architecture

An illustration of the leapfrog layer updating (x, v) --> (x', v') can be seen below.

leapfrog layer

Lattice

Lattice code can be found in lattice.py, specifically the GaugeLattice object that provides the base structure on which our target distribution exists.

Additionally, the GaugeLattice object implements a variety of methods for calculating physical observables such as the average plaquette, ΙΈβ‚š, and the topological charge Q,

Training

The training loop is implemented in l2hmc-qcd/utils/training_utils.py .

To train the sampler on a 2D U(1) gauge model using the parameters specified in bin/train_configs.json:

$ python3 /path/to/l2hmc-qcd/l2hmc-qcd/train.py --json_file=/path/to/l2hmc-qcd/bin/train_configs.json

Or via the bin/train.sh script provided in bin/.

Features

  • Distributed training (via horovod): If horovod is installed, the model can be trained across multiple GPUs (or CPUs) by:

    #!/bin/bash
    
    TRAINER=/path/to/l2hmc-qcd/l2hmc-qcd/train.py
    JSON_FILE=/path/to/l2hmc-qcd/bin/train_configs.json
    
    horovodrun -np ${PROCS} python3 ${TRAINER} --json_file=${JSON_FILE}

Contact


Code author: Sam Foreman

Pull requests and issues should be directed to: saforem2

Citation

If you use this code or found this work interesting, please cite our work along with the original paper:

@misc{foreman2021deep,
      title={Deep Learning Hamiltonian Monte Carlo}, 
      author={Sam Foreman and Xiao-Yong Jin and James C. Osborn},
      year={2021},
      eprint={2105.03418},
      archivePrefix={arXiv},
      primaryClass={hep-lat}
}
@article{levy2017generalizing,
  title={Generalizing Hamiltonian Monte Carlo with Neural Networks},
  author={Levy, Daniel and Hoffman, Matthew D. and Sohl-Dickstein, Jascha},
  journal={arXiv preprint arXiv:1711.09268},
  year={2017}
}

Acknowledgement

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE_AC02-06CH11357. This work describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the work do not necessarily represent the views of the U.S. DOE or the United States Government. Declaration of Interests - None.

Hits

Stargazers over time

Comments
  • Remove upper bound on python_requires

    Remove upper bound on python_requires

    (I'm moving between meetings so can iterate on this more later, so excuse the very brief Issue for now).

    At the moment the project has an upper bound on python_requires

    https://github.com/saforem2/l2hmc-qcd/blob/2eb6ee63cc0c53b187e6d716f4c12f418c8b8515/setup.py#L165

    Assuming that you're intending l2hmc to be a library and not an application, then I would highly recommend removing this for the reasons summarized in Henry's detailed blog post on the subject.

    Congrats on getting l2hmc up on PyPI though! :snake: :rocket:

    opened by matthewfeickert 2
  • Alpha

    Alpha

    Pull upstream alpha branch into main

    Major changes

    • new src/ hierarchical module organization
    • Contains skeleton implementation of 4D SU(3) lattice gauge model
    • Framework independent configuration
      • Unified configuration system simplifies logic, same configs used for both tensorflow and pytorch experiments
      • Plan to be able to specify which backend to use through config option
    • Unified (and framework independent) configurations between tensorflow and pytorch implementations

    Note: This is still very much a WIP. Many existing features still need to be re-implemented / updated into new code in src/.

    Todo

    • [ ] Write unit tests
    • [ ] Use simple configs for end-to-end workflow test + integrate into CI
    • [ ] dynamic learning rate scheduling
    • [ ] Test 4D SU(3) numpy code
    • [ ] Write tensorflow and pytorch implementations of LatticeSU3 objects
    • [ ] Improved / simplified ( / trainable?) annealing schedule
    • [ ] Distributed training support
      • [ ] horovod
      • [ ] DDP for pytorch implementation
      • [ ] DeepSpeed from Microsoft??
    • [ ] Testing / inference logic
    • [ ] Automatic checkpointing
    • [ ] Metric logging
      • [ ] Tensorboard?
      • [ ] Sacred?
      • [ ] build custom dashboard? plot.ly?
    • [ ] Setup packaging / distribution through pip
    • [ ] Resolve issue
    opened by saforem2 1
  • Alpha

    Alpha

    opened by saforem2 1
  • Rich

    Rich

    General improvements, rewrote logging methods to use Rich for better formatting.

    • Adds dynamic (trainable) step size eps for each separate x and v updates, seems to generally increase the total energy towards the middle of the trajectory but it remains unclear if this corresponds to an improvement in the tunneling rate
    • Adds methods for calculating autocorrelations of the topological charge, as well as notebooks for generating the plots
    • Updates to the writeup in doc/main.pdf
    • Will likely be last changes to writeup before public release of official draft
    opened by saforem2 1
  • Dev

    Dev

    • Updates to README

    • Ability to load network with new training instance

    • Updates to doc/, removes old sections related to debugging the bias in the plaquette

    opened by saforem2 1
  • Saveable model

    Saveable model

    Complete rewrite of dynamics.xnet and dynamics.vnet models to use tf.keras.functional Models.

    Additional changes include:

    • Non-Compact Projection update for gauge fields
    • Ability to specify convolution structure to be prepended at beginning of gauge network
    opened by saforem2 1
  • Dev

    Dev

    Removes models/gauge_model.py entirely.

    Instead, a base dynamics class is implemented in dynamics/dynamics.py, and an example subclass is provided in dynamics/gauge_dynamics.py.

    opened by saforem2 1
  • Split networks

    Split networks

    Major rewrite of existing codebase.

    This pull request updates everything to be compatible with tensorflow >= 2.2 and removes a bunch of redundant legacy code.

    opened by saforem2 1
  • Dev

    Dev

    • Dynamics object is now compatible with tf >= 2.0
    • Running inference on trained model with tensorflow now creates identical graphs and summary files to numpy inference code
    • Inference with numpy now uses object oriented structure
    • Adds LaTeX + PDF documentation in doc/
    opened by saforem2 1
  • Cooley dev

    Cooley dev

    Adds new GaugeNetwork architecture as the default for training GaugeModel

    Additionally, replaces pickle with joblib for saving data as .z compressed files (as opposed to .pkl files).

    opened by saforem2 1
  • Testing

    Testing

    Implemented nnehmc_loss calculation for an alternative loss function using the approach suggested in https://infoscience.epfl.ch/record/264887/files/robust_parameter_estimation.pdf.

    This modified loss function can be chosen (instead of the standard loss described in the original paper) by passing --use_nnehmc_loss as a command line argument.

    opened by saforem2 1
  • Packaging and PyPI distribution?

    Packaging and PyPI distribution?

    As you've made a library and are using it as such:

    # snippet from toy_distributions.ipynb
    
    # append parent directory to `sys.path`
    # to load from modules in `../l2hmc-qcd/`
    module_path = os.path.join('..')
    if module_path not in sys.path:
        sys.path.append(module_path)
    
    # Local imports
    from utils.attr_dict import AttrDict
    from utils.training_utils import train_dynamics
    from dynamics.config import DynamicsConfig
    from dynamics.base_dynamics import BaseDynamics
    from dynamics.generic_dynamics import GenericDynamics
    from network.config import LearningRateConfig
    from config import (State, NetWeights, MonteCarloStates,
                        BASE_DIR, BIN_DIR, TF_FLOAT)
    
    from utils.distributions import (plot_samples2D, contour_potential,
                                     two_moons_potential, sin_potential,
                                     sin_potential1, sin_potential2)
    

    do you have any plans and/or interest in packaging it as a Python library so it can either be pip installed from GitHub or be distributed on PyPI?

    opened by matthewfeickert 5
Releases(0.12.0)
Owner
Sam Foreman
Computational science Postdoc at Argonne National Laboratory working on applying machine learning to simulations in lattice QCD.
Sam Foreman
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. πŸ”₯

ElegantRL β€œε°ι›…β€: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022