VLG-Net: Video-Language Graph Matching Networks for Video Grounding

Related tags

Deep LearningVLG-Net
Overview

VLG-Net: Video-Language Graph Matching Networks for Video Grounding

Introduction

Official repository for VLG-Net: Video-Language Graph Matching Networks for Video Grounding. [ArXiv Preprint]

The paper is accepted to the first edition fo the ICCV workshop: AI for Creative Video Editing and Understanding (CVEU).

Installation

Clone the repository and move to folder:

git clone https://github.com/Soldelli/VLG-Net.git
cd VLG-Net

Install environmnet:

conda env create -f environment.yml

If installation fails, please follow the instructions in file doc/environment.md (link).

Data

Download the following resources and extract the content in the appropriate destination folder. See table.

Resource Download Link File Size Destination Folder
StandfordCoreNLP-4.0.0 link (~0.5GB) ./datasets/
TACoS link (~0.5GB) ./datasets/
ActivityNet-Captions link (~29GB) ./datasets/
DiDeMo link (~13GB) ./datasets/
GCNeXt warmup link (~0.1GB) ./datasets/
Pretrained Models link (~0.1GB) ./models/

The folder structure should be as follows:

.
├── configs
│
├── datasets
│   ├── activitynet1.3
│   │    ├── annotations
│   │    └── features
│   ├── didemo
│   │    ├── annotations
│   │    └── features
│   ├── tacos
│   │    ├── annotations
│   │    └── features
│   ├── gcnext_warmup
│   └── standford-corenlp-4.0.0
│
├── doc
│
├── lib
│   ├── config
│   ├── data
│   ├── engine
│   ├── modeling
│   ├── structures
│   └── utils
│
├── models
│   ├── activitynet
│   └── tacos
│
├── outputs
│
└── scripts

Training

Copy paste the following commands in the terminal.

Load environment:

conda activate vlg
  • For ActivityNet-Captions dataset, run:
python train_net.py --config-file configs/activitynet.yml OUTPUT_DIR outputs/activitynet
  • For TACoS dataset, run:
python train_net.py --config-file configs/tacos.yml OUTPUT_DIR outputs/tacos

Evaluation

For simplicity we provide scripts to automatically run the inference on pretrained models. See script details if you want to run inference on a different model.

Load environment:

conda activate vlg

Then run one of the following scripts to launch the evaluation.

  • For ActivityNet-Captions dataset, run:
    bash scripts/activitynet.sh
  • For TACoS dataset, run:
    bash scripts/tacos.sh

Expected results:

After cleaning the code and fixing a couple of minor bugs, performance changed (slightly) with respect to reported numbers in the paper. See below table.

ActivityNet [email protected] [email protected] [email protected] [email protected]
Paper 46.32 29.82 77.15 63.33
Current 46.32 29.79 77.19 63.36

TACoS [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Paper 57.21 45.46 34.19 81.80 70.38 56.56
Current 57.16 45.56 34.14 81.48 70.13 56.34

Citation

If any part of our paper and code is helpful to your work, please cite with:

@inproceedings{soldan2021vlg,
  title={VLG-Net: Video-Language Graph Matching Network for Video Grounding},
  author={Soldan, Mattia and Xu, Mengmeng and Qu, Sisi and Tegner, Jesper and Ghanem, Bernard},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={3224--3234},
  year={2021}
}
Owner
Mattia Soldan
PhD student @ KAUST. Working at the intersection between language and video. #Deeplearning #MachineLearning
Mattia Soldan
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Ian Covert 130 Jan 01, 2023
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022