Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Related tags

Deep LearningPhySG
Overview

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Quick start

  • Create conda environment
conda env create -f environment.yml
conda activate PhySG
  • Download example data from google drive.

  • Optimize for geometry and material given a set of posed images and object segmentation masks

cd code
~~python training/exp_runner.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/train \
                              --expname kitty \
                              --nepoch 2000 --max_niter 200001 \
                              --gamma 1.0
  • Render novel views, relighting and mesh extraction, etc.
cd code
# use same lighting as training
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr
# plug in new lighting                              
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr \
                              --light_sg ./envmaps/envmap3_sg_fit/tmp_lgtSGs_100.npy

Tips: for viewing exr images, you can use tev hdr viewer.

Some important pointers

  • code/model/sg_render.py: core of the appearance modelling that evaluates rendering equation using spherical Gaussians.
    • code/model/sg_envmap_convention.png: coordinate system convention for the envmap.
  • code/model/sg_envmap_material.py: optimizable parameters for the material part.
  • code/model/implicit_differentiable_renderer.py: optimizable parameters for the geometry part; it also contains our foward rendering code.
  • code/training/idr_train.py: SGD optimization of unknown geometry and material.
  • code/evaluation/eval.py: novel view rendering, relighting, mesh extraction, etc.
  • code/envmaps/fit_envmap_with_sg.py: represent an envmap with mixture of spherical Gaussians. We provide three envmaps represented by spherical Gaussians optimized via this script in the 'code/envmaps' folder.

Prepare your own data

  • Organize the images and masks in the same way as the provided data.
  • As to camera parameters, we follow the same convention as NeRF++ to use OpenCV conventions.

Acknowledgements: this codebase borrows a lot from the awesome IDR work; we thank the authors for releasing their code.

Owner
Kai Zhang
PhD candidate at Cornell.
Kai Zhang
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023