Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Overview

Unified-EPT

Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Installation

  • Linux, CUDA>=10.0, GCC>=5.4
  • Python>=3.7
  • Create a conda environment:
    conda create -n unept python=3.7 pip

Then, activate the environment:

    conda activate unept
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

For example:

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Data Preparation

Please following the code from openseg to generate ground truth for boundary refinement.

The data format should be like this.

ADE20k

You can download the processed dt_offset file here.

path/to/ADEChallengeData2016/
  images/
    training/
    validation/
  annotations/ 
    training/
    validation/
  dt_offset/
    training/
    validation/

PASCAL-Context

You can download the processed dataset here.

path/to/PASCAL-Context/
  train/
    image/
    label/
    dt_offset/
  val/
    image/
    label/
    dt_offset/

Usage

Training

The default is for multi-gpu, DistributedDataParallel training.

python -m torch.distributed.launch --nproc_per_node=8 \ # specify gpu number
--master_port=29500  \
train.py  --launcher pytorch \
--config /path/to/config_file 
  • specify the data_root in the config file;
  • log dir will be created in ./work_dirs;
  • download the DeiT pretrained model and specify the pretrained path in the config file.

Evaluation

# single-gpu testing
python test.py --checkpoint /path/to/checkpoint \
--config /path/to/config_file \
--eval mIoU \
[--out ${RESULT_FILE}] [--show] \
--aug-test \ # for multi-scale flip aug

# multi-gpu testing (4 gpus, 1 sample per gpu)
python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 \
test.py  --launcher pytorch --eval mIoU \
--config_file /path/to/config_file \
--checkpoint /path/to/checkpoint \
--aug-test \ # for multi-scale flip aug

Results

We report results on validation sets.

Backbone Crop Size Batch Size Dataset Lr schd Mem(GB) mIoU(ms+flip) config
Res-50 480x480 16 ADE20K 160K 7.0G 46.1 config
DeiT 480x480 16 ADE20K 160K 8.5G 50.5 config
DeiT 480x480 16 PASCAL-Context 160K 8.5G 55.2 config

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Citation

If you use this code and models for your research, please consider citing:

@article{zhu2021unified,
  title={A Unified Efficient Pyramid Transformer for Semantic Segmentation},
  author={Zhu, Fangrui and Zhu, Yi and Zhang, Li and Wu, Chongruo and Fu, Yanwei and Li, Mu},
  journal={arXiv preprint arXiv:2107.14209},
  year={2021}
}

Acknowledgment

We thank the authors and contributors of MMCV, MMSegmentation, timm and Deformable DETR.

Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022