Context Axial Reverse Attention Network for Small Medical Objects Segmentation

Overview

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation

PWC

PWC

PWC

PWC

Result
This repository contains the implementation of a novel attention based network (CaraNet) to segment the polyp (CVC-T, CVC-ClinicDB, CVC-ColonDB, ETIS and Kvasir) and brain tumor (BraTS). The CaraNet show great overall segmentation performance (mean dice) on polyp and brain tumor, but also show great performance on small medical objects (small polyps and brain tumors) segmentation.

The technique report is here: CaraNet

Architecture of CaraNet

Backbone

We use Res2Net as our backbone.

Context module

We choose our CFP module as context module, and choose the dilation rate is 8. For the details of CFP module you can find here: CFPNet. The architecture of CFP module as shown in following figure:

Result

Axial Reverse Attention

As shown in architecture of CaraNet, the Axial Reverse Attention (A-RA) module contains two routes: 1) Reverse attention; 2) Axial-attention.

Installation & Usage

Enviroment

  • Enviroment: Python 3.6;
  • Install some packages:
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
conda install opencv-python pillow numpy matplotlib
  • Clone this repository
git clone https://github.com/AngeLouCN/CaraNet

Training

  • Download the training and texting dataset from this link: Experiment Dataset
  • Change the --train_path & --test_path in Train.py
  • Run Train.py
  • Testing dataset is ordered as follow:
|-- TestDataset
|   |-- CVC-300
|   |   |-- images
|   |   |-- masks
|   |-- CVC-ClinicDB
|   |   |-- images
|   |   |-- masks
|   |-- CVC-ColonDB
|   |   |-- images
|   |   |-- masks
|   |-- ETIS-LaribPolypDB
|   |   |-- images
|   |   |-- masks
|   |-- Kvasir
|       |-- images
|       |-- masks

Testing

  • Change the data_path in Test.py

Evaluation

  • Change the image_root and gt_root in eval_Kvasir.py
  • You can also run the matlab code in eval fold, it contains other four measurement metrics results.
  • You can download the segmentation maps of CaraNte from this link: CaraNet

Segmentation Results

  • Polyp Segmentation Results
Result
Result
  • Small polyp analysis

The x-axis is the proportion size (%) of polyp; y-axis is the average mean dice coefficient.

Kvasir CVC-ClinicDB CVC-ColonDB ETIS CVC-300
Result
Result
Result
Result
Result
  • Brain Tumor Segmentation Results
Result
  • Small tumor analysis
Result

Citation

@article{lou2021cfpnet,
  title={CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation},
  author={Lou, Ange and Loew, Murray},
  journal={arXiv preprint arXiv:2103.12212},
  year={2021}
}
Owner
GW (M.S. EE)→Vanderbilt (Ph.D. EE)
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021