Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Overview

PWC

Continuous Sparsification

Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, proposed in [Winning the Lottery with Continuous Sparsification].

Requirements

Python 2/3, PyTorch == 1.1.0

Training a ResNet on CIFAR with Continuous Sparsification

The main.py script can be used to train a ResNet-18 on CIFAR-10 with Continuous Sparsification. By default it will perform 3 rounds of training, each round consisting of 85 epochs. With the default hyperparameter values for the mask initialization, mask penalty, and final temperature, the method will find a sub-network with 20-30% sparsity which achieves 91.5-92.0% test accuracy when trained after rewinding (the dense network achieves 90-91%). The training and rewinding protocols follow the ones in the Lottery Ticket Hypothesis papers by Frankle.

In general, the sparsity of the final sub-network can be controlled by changing the value used to initialize the soft mask parameters. This can be done with, for example:

python main.py --mask-initial-value 0.1

The default value is 0.0 and increasing it will result in less sparse sub-networks. High sparsity sub-networks can be found by setting it to -0.1.

Extending the code

To train other network models with Continuous Sparsification, the first step is to choose which layers you want to sparsify and then implement PyTorch modules that perform soft masking on its original parameters. This repository contains code for 2D convolutions with soft masking: the SoftMaskedConv2d module in models/layers.py:

class SoftMaskedConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, padding=1, stride=1, mask_initial_value=0.):
        super(SoftMaskedConv2d, self).__init__()
        self.mask_initial_value = mask_initial_value
        
        self.in_channels = in_channels
        self.out_channels = out_channels    
        self.kernel_size = kernel_size
        self.padding = padding
        self.stride = stride
        
        self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size, kernel_size))
        nn.init.xavier_normal_(self.weight)
        self.init_weight = nn.Parameter(torch.zeros_like(self.weight), requires_grad=False)
        self.init_mask()
        
    def init_mask(self):
        self.mask_weight = nn.Parameter(torch.Tensor(self.out_channels, self.in_channels, self.kernel_size, self.kernel_size))
        nn.init.constant_(self.mask_weight, self.mask_initial_value)

    def compute_mask(self, temp, ticket):
        scaling = 1. / sigmoid(self.mask_initial_value)
        if ticket: mask = (self.mask_weight > 0).float()
        else: mask = F.sigmoid(temp * self.mask_weight)
        return scaling * mask      
        
    def prune(self, temp):
        self.mask_weight.data = torch.clamp(temp * self.mask_weight.data, max=self.mask_initial_value)   

    def forward(self, x, temp=1, ticket=False):
        self.mask = self.compute_mask(temp, ticket)
        masked_weight = self.weight * self.mask
        out = F.conv2d(x, masked_weight, stride=self.stride, padding=self.padding)        
        return out
        
    def checkpoint(self):
        self.init_weight.data = self.weight.clone()       
        
    def rewind_weights(self):
        self.weight.data = self.init_weight.clone()

    def extra_repr(self):
        return '{}, {}, kernel_size={}, stride={}, padding={}'.format(
            self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding)

Extending it to other layers is straightforward, since you only need to change the init, init_mask and the forward methods. In init_mask, you should create a mask parameter (of PyTorch Parameter type) for each parameter set that you want to sparsify -- each mask parameter must have the same dimensions as the corresponding parameter.

    def init_mask(self):
        self.mask_weight = nn.Parameter(torch.Tensor(...))
        nn.init.constant_(self.mask_weight, self.mask_initial_value)

In the forward method, you need to compute the masked parameter for each parameter to be sparsified (e.g. masked weights for a Linear layer), and then compute the output of the layer with the corresponding PyTorch functional call (e.g. F.Linear for Linear layers). For example:

    def forward(self, x, temp=1, ticket=False):
        self.mask = self.compute_mask(temp, ticket)
        masked_weight = self.weight * self.mask
        out = F.linear(x, masked_weight)        
        return out

Once all the required layers have been implemented, it remains to implement the network which CS will sparsify. In models/networks.py, you can find code for the ResNet-18 and use it as base to implement other networks. In general, your network can inherit from MaskedNet instead of nn.Module and most of the required functionalities will be immediately available. What remains is to use the layers you implemented (the ones with soft masked paramaters) in your network, and remember to pass temp and ticket as additional inputs: temp is the current temperature of CS (assumed to be the attribute model.temp in main.py), while ticket is a boolean variable that controls whether the parameters' masks should be soft (ticket=False) or hard (ticket=True). Having ticket=True means that the mask will be binary and the masked parameters will actually be sparse. Use ticket=False for training (i.e. sub-network search) and ticket=True once you are done and want to evaluate the sparse sub-network.

Future plans

We plan to make the effort of applying CS to other layers/networks considerably smaller. This will be hopefully achieved by offering a function that receives a standard PyTorch Module object and returns another Module but with the mask parameters properly created and the forward passes overloaded to use masked parameters instead.

If there are specific functionalities that would help you in your research or in applying our method in general, feel free to suggest it and we will consider implementing it.

Citation

If you use our method for research purposes, please cite our work:

@article{ssm2019cs,
       author = {Savarese, Pedro and Silva, Hugo and Maire, Michael},
        title = {Winning the Lottery with Continuous Sparsification},
      journal = {arXiv:1912.04427},
         year = "2019"
}
Owner
Pedro Savarese
PhD student at TTIC
Pedro Savarese
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022