[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Overview

Unsupervised Object-Level Representation Learning from Scene Images

This repository contains the official PyTorch implementation of the ORL algorithm for self-supervised representation learning.

Unsupervised Object-Level Representation Learning from Scene Images,
Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, Chen Change Loy
In NeurIPS 2021
[Paper][Project Page][Bibtex]

highlights

Updates

  • [12/2021] Code and pre-trained models of ORL are released.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Models

Pre-trained models can be downloaded from Google Drive. Please see our paper for transfer learning results on different benchmarks.

Usage

Stage 1: Image-level pre-training

You need to pre-train an image-level contrastive learning model in this stage. Take BYOL as an example:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800.py 8

This stage can be freely replaced with other image-level contrastive learning models.

Stage 2: Correspondence discovery

  • KNN image retrieval

First, extract all features in the training set using the pre-trained model weights in Stage 1:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage1/r50_bs512_ep800_extract_feature.py 8 --resume_from work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth

Second, retrieve KNN for each image using tools/coco_knn_image_retrieval.ipynb. The corresponding KNN image ids will be saved as a json file train2017_knn_instance.json under data/coco/meta/.

  • RoI generation

Apply selective search to generate region proposals for all images in the training set:

bash tools/dist_selective_search_single_gpu.sh configs/selfsup/orl/coco/stage2/selective_search_train2017.py data/coco/meta/train2017_selective_search_proposal.json

The script and config only support single-image single-gpu inference since different images can have different number of generated region proposals by selective search, which cannot be gathered if distributed in multiple gpus. You can also directly download here under data/coco/meta/ if you want to skip this step.

  • RoI pair retrieval

Retrieve top-ranked RoI pairs:

bash tools/dist_generate_correspondence_single_gpu.sh configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_all_correspondence.py work_dirs/selfsup/orl/coco/stage1/r50_bs512_ep800/epoch_800.pth data/coco/meta/train2017_knn_instance.json data/coco/meta/train2017_knn_instance_correspondence.json

The script and config also only support single-image single-gpu inference since different image pairs can have different number of generated inter-RoI pairs, which cannot be gathered if distributed in multiple gpus. A workaround to speed up the retrieval process is to split the whole dataset into several parts and process each part on each gpu in parallel. We provide an example of these configs (10 parts in total) in configs/selfsup/orl/coco/stage2/r50_bs512_ep800_generate_partial_correspondence/. After generating each part, you can use tools/merge_partial_correspondence_files.py to merge them together and save the final correspondence json file train2017_knn_instance_correspondence.json under data/coco/meta/.

Stage 3: Object-level pre-training

After obtaining the correspondence file in Stage 2, you can then perform object-level pre-training:

bash tools/dist_train.sh configs/selfsup/orl/coco/stage3/r50_bs512_ep800.py 8

Transferring to downstream tasks

Please refer to GETTING_STARTED.md for transferring to various downstream tasks.

Acknowledgement

We would like to thank the OpenSelfSup for its open-source project and PyContrast for its detection evaluation configs.

Citation

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows:

@inproceedings{xie2021unsupervised,
  title={Unsupervised Object-Level Representation Learning from Scene Images},
  author={Xie, Jiahao and Zhan, Xiaohang and Liu, Ziwei and Ong, Yew Soon and Loy, Chen Change},
  booktitle={NeurIPS},
  year={2021}
}
Owner
Jiahao Xie
Jiahao Xie
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022