TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

Overview

TalkingHead-1KH Dataset

Python 3.7 License CC Format MP4 Resolution 512×512 Videos 500k

TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid:

One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing
Ting-Chun Wang (NVIDIA), Arun Mallya (NVIDIA), Ming-Yu Liu (NVIDIA)
https://nvlabs.github.io/face-vid2vid/
https://arxiv.org/abs/2011.15126.pdf

The dataset consists of 500k video clips, of which about 80k are greater than 512x512 resolution. Only videos under permissive licenses are included. Note that the number of videos differ from that in the original paper because a more robust preprocessing script was used to split the videos. For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing.

Download

Unzip the video metadata

First, unzip the metadata and put it under the root directory:

unzip data_list.zip

Unit test

This step downloads a small subset of the dataset to verify the scripts are working on your computer. You can also skip this step if you want to directly download the entire dataset.

bash videos_download_and_crop.sh small

The processed clips should appear in small/cropped_clips.

Download the entire dataset

Please run

bash videos_download_and_crop.sh train

The script will automatically download the YouTube videos, split them into short clips, and then crop and trim them to include only the face regions. The final processed clips should appear in train/cropped_clips.

Evaluation

To download the evaluation set which consists of only 1080p videos, please run

bash videos_download_and_crop.sh val

The processed clips should appear in val/cropped_clips.

We also provide the reconstruction results synthesized by our model here. For each video, we use only the first frame to reconstruct all the following frames.

Furthermore, for models trained using the VoxCeleb2 dataset, we also provide comparisons using another model trained on the VoxCeleb2 dataset. Please find the reconstruction results here.

Licenses

The individual videos were published in YouTube by their respective authors under Creative Commons BY 3.0 license. The metadata file, the download script file, the processing script file, and the documentation file are made available under MIT license. You can use, redistribute, and adapt it, as long as you (a) give appropriate credit by citing our paper, (b) indicate any changes that you've made, and (c) distribute any derivative works under the same license.

Privacy

When collecting the data, we were careful to only include videos that – to the best of our knowledge – were intended for free use and redistribution by their respective authors. That said, we are committed to protecting the privacy of individuals who do not wish their videos to be included.

If you would like to remove your video from the dataset, you can either

  1. Go to YouTube and change the license of your video, or remove your video entirely.
  2. Contact [email protected]. Please include your YouTube video link in the email.

Acknowledgements

This webpage borrows heavily from the FFHQ-dataset page.

Citation

If you use this dataset for your work, please cite

@inproceedings{wang2021facevid2vid,
  title={One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing},
  author={Ting-Chun Wang and Arun Mallya and Ming-Yu Liu},
  booktitle={CVPR},
  year={2021}
}
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022