Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

Overview

One Pixel Attack

Open In Colab Contributions welcome MIT License

Who would win?

How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pixel and only see the prediction probability? Turns out it is very simple. In many cases, an attacker can even cause the network to return any answer they want.

The following project is a Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks". The official code for the paper can be found here.

How It Works

For this attack, we will use the Cifar10 dataset. The task of the dataset is to correctly classify a 32x32 pixel image in 1 of 10 categories (e.g., bird, deer, truck). The black-box attack requires only the probability labels (the probability value for each category) that get outputted by the neural network. We generate adversarial images by selecting a pixel and modifying it to a certain color.

By using an Evolutionary Algorithm called Differential Evolution (DE), we can iteratively generate adversarial images to try to minimize the confidence (probability) of the neural network's classification.

Ackley GIF

Credit: Pablo R. Mier's Blog

First, generate several adversarial samples that modify a random pixel and run the images through the neural network. Next, combine the previous pixels' positions and colors together, generate several more adversarial samples from them, and run the new images through the neural network. If there were pixels that lowered the confidence of the network from the last step, replace them as the current best known solutions. Repeat these steps for a few iterations; then on the last step return the adversarial image that reduced the network's confidence the most. If successful, the confidence would be reduced so much that a new (incorrect) category now has the highest classification confidence.

See below for some examples of successful attacks:

Examples

Getting Started

Need a GPU or just want to read? View the first tutorial notebook with Google Colab.

To run the code in the tutorial locally, a dedicated GPU suitable for running with Keras (tensorflow-gpu) is recommended. Python 3.5+ required.

  1. Clone the repository.
git clone https://github.com/Hyperparticle/one-pixel-attack-keras
cd ./one-pixel-attack-keras
  1. Install the python packages in requirements.txt if you don't have them already.
pip install -r ./requirements.txt
  1. Run the iPython tutorial notebook with Jupyter.
jupyter notebook ./one-pixel-attack.ipynb

Training and Testing

To train a model, run train.py. The model will be checkpointed (saved) after each epoch to the networks/models directory.

For example, to train a ResNet with 200 epochs and a batch size of 128:

python train.py --model resnet --epochs 200 --batch_size 128

To perform attack, run attack.py. By default this will run all models with default parameters. To specify the types of models to test, use --model.

python attack.py --model densenet capsnet

The available models currently are:

Results

Preliminary results after running several experiments on various models. Each experiment generates 100 adversarial images and calculates the attack success rate, i.e., the ratio of images that successfully caused the model to misclassify an image over the total number of images. For a given model, multiple experiments are run based on the number of pixels that may be modified in an image (1,3, or 5). The differential algorithm was run with a population size of 400 and a max iteration count of 75.

Attack on 1,3,5 pixel perturbations (100 samples)

model parameters test accuracy pixels attack success (untargeted) attack success (targeted)
LeNet 62K 74.9% 1 63.0% 34.4%
3 92.0% 64.4%
5 93.0% 64.4%
Pure CNN 1.4M 88.8% 1 13.0% 6.67%
3 58.0% 13.3%
5 63.0% 18.9%
Network in Network 970K 90.8% 1 34.0% 10.0%
3 73.0% 24.4%
5 73.0% 31.1%
ResNet 470K 92.3% 1 34.0% 14.4%
3 79.0% 21.1%
5 79.0% 22.2%
DenseNet 850K 94.7% 1 31.0% 4.44%
3 71.0% 23.3%
5 69.0% 28.9%
Wide ResNet 11M 95.3% 1 19.0% 1.11%
3 58.0% 18.9%
5 65.0% 22.2%
CapsNet 12M 79.8% 1 19.0% 0.00%
3 39.0% 4.44%
5 36.0% 4.44%

It appears that the capsule network CapsNet, while more resilient to the one pixel attack than all other CNNs, is still vulnerable.

Milestones

  • Cifar10 dataset
  • Tutorial notebook
  • LeNet, Network in Network, Residual Network, DenseNet models
  • CapsNet (capsule network) model
  • Configurable command-line interface
  • Efficient differential evolution implementation
  • ImageNet dataset
Owner
Dan Kondratyuk
Machine Learning, NLP, and Computer Vision. I love a fresh challenge—be it a math problem, a physics puzzle, or programming quandary.
Dan Kondratyuk
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023