3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

Overview

3rd Place Solution of Traffic4Cast 2021 Core Challenge

This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge.

Paper

Our solution is described in the "Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation" paper.

If you wish to cite this code, please do it as follows:

@misc{konyakhin2021solving,
      title={Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation}, 
      author={Vsevolod Konyakhin and Nina Lukashina and Aleksei Shpilman},
      year={2021},
      eprint={2111.03421},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Competition and Demonstration Track @ NeurIPS 2021

Learnt parameters

The models' learnt parameters are available by the link: https://drive.google.com/file/d/1zD0CecX4P3v5ugxaHO2CQW9oX7_D4BCa/view?usp=sharing
Please download the archive and unzip it into the weights folder of the repository, so its structure looks like the following:

├── ...
├── traffic4cast
├── weights
│   ├── densenet                 
│   │   ├── BERLIN_1008_1430_densenet_unet_mse_best_val_loss_2019=78.4303.pth                     
│   │   ├── CHICAGO_1010_1730_densenet_unet_mse_best_val_loss_2019=41.1579.pth
│   │   └── MELBOURNE_1009_1619_densenet_unet_mse_best_val_loss_2019=25.7395.pth    
│   ├── effnetb5
│   │   ├── BERLIN_1008_1430_efficientnetb5_unet_mse_best_val_loss_2019=80.3510.pth    
│   │   ├── CHICAGO_1012_1035_efficientnetb5_unet_mse_best_val_loss_2019=41.6425.pth
│   │   ├── ISTANBUL_1012_2315_efficientnetb5_unet_mse_best_val_loss_2019=55.7918.pth    
│   │   └── MELBOURNE_1010_0058_efficientnetb5_unet_mse_best_val_loss_2019=26.0132.pth    
│   └── unet
│       ├── BERLIN_0806_1425_vanilla_unet_mse_best_val_loss_2019=0.0000_v5.pth    
│       ├── CHICAGO_0805_0038_vanilla_unet_mse_best_val_loss_2019=42.6634.pth
│       ├── ISTANBUL_0805_2317_vanilla_unet_mse_best_val_loss_2019=0.0000_v4.pth
│       └── MELBOURNE_0804_1942_vanilla_unet_mse_best_val_loss_2019=26.7588.pth
├── ...

Submission reproduction

To generate the submission file, please run the following script:

# $1 - absolute path to the dataset, $2 device to run inference
sh submission.sh {absolute path to dataset} {cpu, cuda}
# Launch example
sh submission.sh /root/data/traffic4cast cuda

The above sctipt generates the submission file submission/submission_all_unets_da_none_mpcpm1_mean_temporal_{date}.zip, which gave us the best MSE of 49.379068541527 on the final leaderboard.

Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022