A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

Overview

ViZDoom Build Status

http://vizdoom.cs.put.edu.pl

ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

ViZDoom is based on ZDoom to provide the game mechanics.

ViZDoom is the platform for Visual Doom Competition @ CIG 2017. :goberserk:

Features

  • Multi-platform,
  • API for C++, Lua, Java and Python,
  • Easy-to-create custom scenarios (examples available),
  • Async and sync single-player and multi-player modes,
  • Fast (up to 7000 fps in sync mode, single threaded),
  • Customizable resolution and rendering parameters,
  • Access to the depth buffer (3D vision)
  • Automatic labeling game objects visible in the frame
  • Off-screen rendering,
  • Episodes recording,
  • Time scaling in async mode,
  • Lightweight (few MBs).

ViZDoom API is reinforcement learning friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning, etc.).

Cite as

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek & Wojciech Jaśkowski, ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning, IEEE Conference on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, 2016 (arXiv:1605.02097)

Bibtex:

@inproceedings{Kempka2016ViZDoom,
  author    = {Micha{\l} Kempka and Marek Wydmuch and Grzegorz Runc and Jakub Toczek and Wojciech Ja\'skowski},
  title     = {{ViZDoom}: A {D}oom-based {AI} Research Platform for Visual Reinforcement Learning},
  booktitle = {IEEE Conference on Computational Intelligence and Games},  
  year      = {2016},
  url       = {http://arxiv.org/abs/1605.02097},
  address   = {Santorini, Greece},
  Month     = {Sep},
  Pages     = {341--348},
  Publisher = {IEEE},
  Note      = {The best paper award}
}

Installation/Building instructions

Windows build

For Windows we are providing compiled runtime binaries and development libraries:

1.1.5pre (2017-10-22):

Examples

Before running the provided examples, make sure that freedoom2.wad is placed in the same directory as the ViZDoom executable (on Linux and macOS it should be done automatically by the building process):

  • Python (contain learning examples implemented in PyTorch, TensorFlow and Theano)
  • C++
  • Lua (contain learning example implemented in Torch)
  • Java

Python examples are currently the richest, so we recommend to look at them, even if you plan to use other language. API is almost identical for all languages.

See also the tutorial.

Documentation

Detailed description of all types and methods:

Changelog for 1.1.X version.

Contributions

This project is maintained and developed in our free time. All bug fixes, new examples and scenarios are welcome! We are also open to features ideas and design suggestions.

License

Code original to ViZDoom is under MIT license. ZDoom uses code from several sources with varying licensing schemes.

Owner
Hyeonwoo Noh
Hyeonwoo Noh
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022