Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

Related tags

Deep LearningRTK-PAD
Overview

RTK-PAD

This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE Transactions on Cybernetics

Fingerprint Presentation Attack Detector Using Global-Local Model (IEEE TCYB)

Requirements

  • numpy>=1.19.2
  • Pillow>=8.3.2
  • pytorch>=1.6.0
  • torchvision>=0.7.0
  • tqdm>=4.62.2
  • scikit-image>=0.18.3
  • scikit-learn>= 0.24.2
  • matplotlib>=3.4.3
  • opencv-python>= 4.5.3

Datasets

The proposed method is evaluated on a publicly-available benchmark, i.e. LivDet 2017, and you can download such dataset through link

Results

Usage

The RTK-PAD method is trained through three steps:

  • Data Preparation

    Generate the image list:

    python datafind.py \
    --data_path {Your path to save LivDet2017}
    

    For example, python train_local_shuffling.py --data_path /data/fingerprint/2017 And then you can get data_path.txt to establish a Dataset Class() provided by pytorch.

  • Pre-trained Model Preparation

    RTK-PAD consists of Global Classifier and Local Classifier and we use two different initializations for them.

    For Global Classifier, the pre-trained model is carried on ImageNet, and you can download the weights from Link

    When it comes to Local Classifier, we propose a self-supervised learning based method to drive the model to learn local patterns. And you can obtain such initialization by

    python train_local_shuffling.py \
    --sensor [D/G] \
    

    D refers to DigitalPersona and G is GreenBit. Since Orcanthus is with the different sizes of the images, we have a specific implementation for such case, which is hard to merge into this code.

  • Training models

    python train_main.py \
    --train_sensor [D/G] \
    --mode [Patch/Whole] \
    --savedir {Your path to save the trained model} \
    
    

Evaluation

For evaluation, we can obtain RTK-PAD inference by

python evaluation.py \
--test_sensor [D/G]
--global_model_path {Your path to save the global classifier})
--patch_model_path {Your path to save the local classifier}
--patch_num 2 \

Citation

Please cite our work if it's useful for your research.

  • BibTex:
@article{liu2021fingerprint,
  title={Fingerprint Presentation Attack Detector Using Global-Local Model},
  author={Liu, Haozhe and Zhang, Wentian and Liu, Feng and Wu, Haoqian and Shen, Linlin},
  journal={IEEE Transactions on Cybernetics},
  year={2021},
  publisher={IEEE}
}
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022