a Lightweight library for sequential learning agents, including reinforcement learning

Related tags

Deep Learningsalina
Overview

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning)

TL;DR

salina is a lightweight library extending PyTorch modules for developping sequential decision models. It can be used for Reinforcement Learning (including model-based with differentiable environments, multi-agent RL, ...), but also in a supervised/unsupervised learning settings (for instance for NLP, Computer Vision, etc..).

  • It allows to write very complex sequential models (or policies) in few lines
  • It works on multiple CPUs and GPUs

Quick Start

  • Just clone the repo

Documentation

For development, set up pre-commit hooks:

  • Run pip install pre-commit
    • or conda install -c conda-forge pre-commit
    • or brew install pre-commit
  • In the top directory of the repo, run pre-commit install to set up the git hook scripts
  • Now pre-commit will run automatically on git commit!
  • Currently isort, black and blacken-docs are used, in that order

Organization of the repo

Dependencies

salina is making use of pytorch, hydra for configuring experiments, and of gym for reinforcement learning algorithms.

Note on the Logger

We provide a simple Logger that logs in both tensorboard format, but also as pickle files that can be re-read to make tables and figures. See logger. This logger can be easily replaced by any other logger.

Description

Sequential Decision Making is much more than Reinforcement learning

  • Sequential Decision Making is about interactions:
  • Interaction with data (e.g attention-models, decision tree, cascade models, active sensing, active learning, recommendation, etc….)
  • Interaction with an environment (e.g games, control)
  • Interaction with humans (e.g recommender systems, dialog systems, health systems, …)
  • Interaction with a model of the world (e.g simulation)
  • Interaction between multiple entities (e.g multi-agent RL)

What salina is

  • A sandbox for developping sequential models at scale.

  • A small (300 hundred lines) 'core' code that defines everything you will use to implement agents involved in sequential decision learning systems.

    • It is easy to understand and to use since it keeps the main principles of pytorch, just extending nn.Module to Agent that handle tthe temporal dimension.

A set of agents that can be combined (like pytorch modules) to obtain complex behaviors

  • A set of references implementations and examples in different domains Reinforcement learning, Imitation Learning, Computer Vision, ... (more to come..)

What salina is not

  • Yet another reinforcement learning framework: salina is focused on sequential decision making in general. It can be used for RL (which is our main current use-case), but also for supervised learning, attention models, multi-agent learning, planning, control, cascade models, recommender systems,...
  • A library: salina is just a small layer on top of pytorch that encourages good practices for implementing sequential models. It thus very simple to understand and to use, but very powerful.

Citing salina

Please use this bibtex if you want to cite this repository in your publications:

Link to the paper: SaLinA: Sequential Learning of Agents

    @misc{salina,
        author = {Ludovic Denoyer, Alfredo de la Fuente, Song Duong, Jean-Baptiste Gaya, Pierre-Alexandre Kamienny, Daniel H. Thompson},
        title = {SaLinA: Sequential Learning of Agents},
        year = {2021},
        publisher = {Arxiv},
        howpublished = {\url{https://gitHub.com/facebookresearch/salina}},
    }

Papers using SaLinA:

  • Learning a subspace of policies for online adaptation in Reinforcement Learning. Jean-Baptiste Gaya, Laure Soulier, Ludovic Denoyer - Arxiv

License

salina is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Owner
Facebook Research
Facebook Research
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023