[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Overview

Unlearnable Examples

Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, Yisen Wang.

Quick Start

Use the QuickStart.ipynb notebook for a quick start.

In the notebook, you can find the minimal implementation for generating sample-wise unlearnable examples on CIFAR-10. Please remove mlconfig from models/__init__.py if you are only using the notebook and copy-paste the model to the notebook.

Experiments in the paper.

Check scripts folder for *.sh for each corresponding experiments.

Sample-wise noise for unlearnable example on CIFAR-10

Generate noise for unlearnable examples
python3 perturbation.py --config_path             configs/cifar10                \
                        --exp_name                path/to/your/experiment/folder \
                        --version                 resnet18                       \
                        --train_data_type         CIFAR-10                       \
                        --noise_shape             50000 3 32 32                  \
                        --epsilon                 8                              \
                        --num_steps               20                             \
                        --step_size               0.8                            \
                        --attack_type             min-min                        \
                        --perturb_type            samplewise                      \
                        --universal_stop_error    0.01
Train on unlearnable examples and eval on clean test
python3 -u main.py    --version                 resnet18                       \
                      --exp_name                path/to/your/experiment/folder \
                      --config_path             configs/cifar10                \
                      --train_data_type         PoisonCIFAR10                  \
                      --poison_rate             1.0                            \
                      --perturb_type            samplewise                      \
                      --perturb_tensor_filepath path/to/your/experiment/folder/perturbation.pt \
                      --train

Class-wise noise for unlearnable example on CIFAR-10

Generate noise for unlearnable examples
python3 perturbation.py --config_path             configs/cifar10                \
                        --exp_name                path/to/your/experiment/folder \
                        --version                 resnet18                       \
                        --train_data_type         CIFAR-10                       \
                        --noise_shape             10 3 32 32                     \
                        --epsilon                 8                              \
                        --num_steps               1                              \
                        --step_size               0.8                            \
                        --attack_type             min-min                        \
                        --perturb_type            classwise                      \
                        --universal_train_target  'train_subset'                 \
                        --universal_stop_error    0.1                            \
                        --use_subset
Train on unlearnable examples and eval on clean test
python3 -u main.py    --version                 resnet18                       \
                      --exp_name                path/to/your/experiment/folder \
                      --config_path             configs/cifar10                \
                      --train_data_type         PoisonCIFAR10                  \
                      --poison_rate             1.0                            \
                      --perturb_type            classwise                      \
                      --perturb_tensor_filepath path/to/your/experiment/folder/perturbation.pt \
                      --train

Cite Our Work

@inproceedings{huang2021unlearnable,
    title={Unlearnable Examples: Making Personal Data Unexploitable},
    author={Hanxun Huang and Xingjun Ma and Sarah Monazam Erfani and James Bailey and Yisen Wang},
    booktitle={ICLR},
    year={2021}
}
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022