Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Related tags

Deep LearningIVR
Overview

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

99% of the code in this repository originates from this link.

ICCV 2021 paper

Jeesoo Kim1, Junsuk Choe2, Sangdoo Yun3, Nojun Kwak1

1 Seoul National University 2 Sogang University 3 Naver AI Lab

Weakly-supervised object localization (WSOL) enables finding an object using a dataset without any localization information. By simply training a classification model using only image-level annotations, the feature map of the model can be utilized as a score map for localization. In spite of many WSOL methods proposing novel strategies, there has not been any de facto standard about how to normalize the class activation map (CAM). Consequently, many WSOL methods have failed to fully exploit their own capacity because of the misuse of a normalization method. In this paper, we review many existing normalization methods and point out that they should be used according to the property of the given dataset. Additionally, we propose a new normalization method which substantially enhances the performance of any CAM-based WSOL methods. Using the proposed normalization method, we provide a comprehensive evaluation over three datasets (CUB, ImageNet and OpenImages) on three different architectures and observe significant performance gains over the conventional min-max normalization method in all the evaluated cases.

RubberDuck

Re-evaluated performance of several WSOL methods using different normalization methods. Comparison of several WSOL methods with different kinds of normalization methods for a class activation map. The accuracy has been evaluated under MaxBoxAccV2 with CUB-200-2011 dataset. All scores in this figure are the average scores of ResNet50, VGG16, and InceptionV3. In all WSOL methods, the performance using our normalization method, IVR, is the best.

Prerequisite

Dataset preparation, Code dependencies are available in the original repository. [Evaluating Weakly Supervised Object Localization Methods Right (CVPR 2020)] (paper)
This repository is highly dependent on this repo and we highly recommend users to refer the original one.

Licenses

The licenses corresponding to the dataset are summarized as follows

Dataset Images Class Annotations Localization Annotations
ImageNetV2 See the original Github See the original Github CC-BY-2.0 NaverCorp.
CUBV2 Follows original image licenses. See here. CC-BY-2.0 NaverCorp. CC-BY-2.0 NaverCorp.
OpenImages CC-BY-2.0 (Follows original image licenses. See here) CC-BY-4.0 Google LLC CC-BY-4.0 Google LLC

Detailed license files are summarized in the release directory.

Note: At the time of collection, images were marked as being licensed under the following licenses:

Attribution-NonCommercial License
Attribution License
Public Domain Dedication (CC0)
Public Domain Mark

However, we make no representations or warranties regarding the license status of each image. You should verify the license for each image yourself.

WSOL training and evaluation

We additionally support the following normalization methods:

  • Normalization.
    • Min-max
    • Max
    • PaS
    • IVR

Below is an example command line for the train+eval script.

python main.py --dataset_name CUB \
               --architecture vgg16 \
               --wsol_method cam \
               --experiment_name CUB_vgg16_CAM \
               --pretrained TRUE \
               --num_val_sample_per_class 5 \
               --large_feature_map FALSE \
               --batch_size 32 \
               --epochs 50 \
               --lr 0.00001268269 \
               --lr_decay_frequency 15 \
               --weight_decay 5.00E-04 \
               --override_cache FALSE \
               --workers 4 \
               --box_v2_metric True \
               --iou_threshold_list 30 50 70 \
               --eval_checkpoint_type last
               --norm_method ivr

See config.py for the full descriptions of the arguments, especially the method-specific hyperparameters.

Experimental results

Details about experiments are available in the paper.

Code license

This project is distributed under MIT license.

Copyright (c) 2020-present NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5. Citation

@article{kim2021normalization,
  title={Normalization Matters in Weakly Supervised Object Localization},
  author={Kim, Jeesoo and Choe, Junsuk and Yun, Sangdoo and Kwak, Nojun},
  journal={arXiv preprint arXiv:2107.13221},
  year={2021}
}
@inproceedings{choe2020cvpr,
  title={Evaluating Weakly Supervised Object Localization Methods Right},
  author={Choe, Junsuk and Oh, Seong Joon and Lee, Seungho and Chun, Sanghyuk and Akata, Zeynep and Shim, Hyunjung},
  year = {2020},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  note = {to appear},
  pubstate = {published},
  tppubtype = {inproceedings}
}
@article{wsol_eval_journal_submission,
  title={Evaluation for Weakly Supervised Object Localization: Protocol, Metrics, and Datasets},
  author={Choe, Junsuk and Oh, Seong Joon and Chun, Sanghyuk and Akata, Zeynep and Shim, Hyunjung},
  journal={arXiv preprint arXiv:2007.04178},
  year={2020}
}
Owner
Jeesoo Kim
Ph.D candidate at Seoul National University
Jeesoo Kim
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022