Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

Overview

FC-DenseNet-Tensorflow

This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). The aim of the repository is to break down the working modules of the network, as presented in the paper, for ease of understanding. To facilitate this, the network is defined in a class, with functions for each block in the network. This promotes a modular view, and an understanding of what each component does individually. I tried to make the model code more readable, and this is the main aim of the this repository.

Network Architecture

Submodules

The "submodules" that build up the Tiramisu are explained here. Note: The graphics are just a redrawing of the ones from the original paper.

The Conv Layer:

The "conv layer" is the most atomic unit of the FC-DenseNet, it is the building block of all other modules. The following image shows the conv layer:

In code, it is implemented as:
def conv_layer(self, x, training, filters, name):
    with tf.name_scope(name):
        x = self.batch_norm(x, training, name=name+'_bn')
        x = tf.nn.relu(x, name=name+'_relu')
        x = tf.layers.conv2d(x,
                             filters=filters,
                             kernel_size=[3, 3],
                             strides=[1, 1],
                             padding='SAME',
                             dilation_rate=[1, 1],
                             activation=None,
                             kernel_initializer=tf.contrib.layers.xavier_initializer(),
                             name=name+'_conv3x3')
        x = tf.layers.dropout(x, rate=0.2, training=training, name=name+'_dropout')

As can be seen, each "convolutional" layer is actually a 4 step procedure of batch normalization -> Relu -> 2D-Convolution -> Dropout.

The Dense Block

The dense block is a sequence of convolutions followed by concatenations. The output of a conv layer is concated depth wise with its input, this forms the input to the next layer, and is repeated for all layers in a dense block. For the final output i.e., the output of the Dense Block, all the outputs of each conv layer in the block are concated, as shown:

In code, it is implemented as:

def dense_block(self, x, training, block_nb, name):
    dense_out = []
    with tf.name_scope(name):
        for i in range(self.layers_per_block[block_nb]):
            conv = self.conv_layer(x, training, self.growth_k, name=name+'_layer_'+str(i))
            x = tf.concat([conv, x], axis=3)
            dense_out.append(conv)

        x = tf.concat(dense_out, axis=3)

    return x

How to Run

To run the network on your own dataset, do the following:

  1. Clone this repository.
  2. Open up your terminal and navigate to the cloned repository
  3. Type in the following:
python main.py --mode=train --train_data=path/to/train/data --val_data=path/to/validation/data \
--ckpt=path/to/save/checkpoint/model.ckpt --layers_per_block=4,5,7,10,12,15 \
--batch_size=8 --epochs=10 --growth_k=16 --num_classes=2 --learning_rate=0.001

The "layers_per_block" argument is only specified for the downsample path, upto the final bottleneck dense block, the upsample path is then automatically built by mirroring the downsample path.

Run with trained checkpoint

To run the code with a trained checkpoint file on images, use the infer mode in in the command line options, like so:

python main.py --mode=infer --infer_data=path/to/infer/data --batch_size=4 \
--ckpt=models/model.ckpt-20 --output_folder=outputs

Tests

The python files ending with "*_test.py" are unit test files, if you make changes or have just cloned the repo, it is a good idea to run them once in your favorite Python IDE, they should let you know if your changes break anything. Currently, the test coverage is not that high, I plan to keep adding more in the future.

TODOs:

  1. Add some more functionality in the code.
  2. Add more detail into this readme.
  3. Save model graph.
  4. Rework command line arguments.
  5. Update with some examples of performance once trained.
  6. Increase test coverage.
  7. Save loss summaries for Tensorboard.
Owner
Hasnain Raza
Hasnain Raza
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023