Full Resolution Residual Networks for Semantic Image Segmentation

Related tags

Deep LearningFRRN
Overview

Full-Resolution Residual Networks (FRRN)

This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) as described in

Tobias Pohlen, Alexander Hermans, Markus Mathias, Bastian Leibe: Full Resolution Residual Networks for Semantic Segmentation in Street Scenes. CVPR 2017.

A pre-print of the paper can be found on arXiv: arXiv:1611.08323.

Please cite the work as follows:

@inproceedings{pohlen2017FRRN,
  title={Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes},
  author={Pohlen, Tobias and Hermans, Alexander and Mathias, Markus and Leibe, Bastian},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on},
  year={2017}
}

Demo Video

Click here to watch our video.

Installation

Install the following software packages:

  • Python 2.7 or 3.4
  • Numpy
  • Scipy
  • Scikit-Learn
  • OpenCV
  • Theano
    • Scipy
    • Scikit-Learn
  • Lasagne

You may optionally install the following library for better performance.

You can check if all dependencies are installed correctly by running the check_dependencies.py script:

$ python check_dependencies.py --cs_folder=[Your CS folder]
2017-07-26 22:17:34,945 INFO Found supported Python version 3.4.
2017-07-26 22:17:35,122 INFO Successfully imported numpy.
2017-07-26 22:17:35,184 INFO Successfully imported cv2.
2017-07-26 22:17:35,666 INFO Successfully imported sklearn.
2017-07-26 22:17:35,691 INFO Successfully imported sklearn.metrics.
2017-07-26 22:17:35,691 INFO Successfully imported scipy.
Using cuDNN version 6021 on context None
Mapped name None to device cuda: TITAN X (Pascal) (0000:02:00.0)
2017-07-26 22:17:38,760 INFO Successfully imported theano.
2017-07-26 22:17:38,797 INFO Successfully imported lasagne.
2017-07-26 22:17:38,797 INFO Theano float is float32.
2017-07-26 22:17:38,803 INFO cuDNN spatial softmax found.
2017-07-26 22:17:38,807 INFO Use Chianti C++ library.
2017-07-26 22:17:38,826 INFO Found CityScapes training set.
2017-07-26 22:17:38,826 INFO Found CityScapes validation set.

If you don't see any ERROR messages, the software should run on your machine.

Qualitatively evaluation a pre-trained model

Run the script predict.py.

$ python predict.py --help
usage: predict.py [-h] --architecture {frrn_a,frrn_b} --model_file MODEL_FILE
                  --cs_folder CS_FOLDER [--sample_factor SAMPLE_FACTOR]

Shows the predictions of a Full-Resolution Residual Network on the Cityscapes
validation set.

optional arguments:
  -h, --help            show this help message and exit
  --architecture {frrn_a,frrn_b}
                        The network architecture type.
  --model_file MODEL_FILE
                        The model filename. Weights are initialized to the
                        given values if the file exists. Snapshots are stored
                        using a _snapshot_[iteration] post-fix.
  --cs_folder CS_FOLDER
                        The folder that contains the Cityscapes Dataset.
  --sample_factor SAMPLE_FACTOR
                        The sampling factor.

Train a new model

Run the train.py script.

$ python train.py --help
usage: train.py [-h] --architecture {frrn_a,frrn_b,frrn_c} --model_file
                MODEL_FILE --log_file LOG_FILE --cs_folder CS_FOLDER
                [--batch_size BATCH_SIZE]
                [--validation_interval VALIDATION_INTERVAL]
                [--iterator {uniform,weighted}] [--crop_size CROP_SIZE]
                [--learning_rate LEARNING_RATE]
                [--sample_factor SAMPLE_FACTOR]

Trains a Full-Resolution Residual Network on the Cityscapes Dataset.

optional arguments:
  -h, --help            show this help message and exit
  --architecture {frrn_a,frrn_b}
                        The network architecture type.
  --model_file MODEL_FILE
                        The model filename. Weights are initialized to the
                        given values if the file exists. Snapshots are stored
                        using a _snapshot_[iteration] post-fix.
  --log_file LOG_FILE   The log filename. Use log_monitor.py in order to
                        monitor training progress in the terminal.
  --cs_folder CS_FOLDER
                        The folder that contains the Cityscapes Dataset.
  --batch_size BATCH_SIZE
                        The batch size.
  --validation_interval VALIDATION_INTERVAL
                        The validation interval.
  --iterator {uniform,weighted}
                        The dataset iterator type.
  --crop_size CROP_SIZE
                        The size of crops to extract from the full-resolution
                        images. If 0, then now crops will be extracted.
  --learning_rate LEARNING_RATE
                        The learning rate to use.
  --sample_factor SAMPLE_FACTOR
                        The sampling factor.

Monitor training

Start a new notebook server and open training_monitor.ipynb.

License

See LICENSE (MIT).

Copyright

Copyright (c) 2017 Google Inc.

Copyright (c) 2017 Toby Pohlen

Owner
Toby Pohlen
Toby Pohlen
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023