[SDM 2022] Towards Similarity-Aware Time-Series Classification

Related tags

Deep LearningSimTSC
Overview

SimTSC

This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Series Classification (SimTSC), a conceptually simple and general framework that models similarity information with graph neural networks (GNNs). We formulate time-series classification as a node classification problem in graphs, where the nodes correspond to time-series, and the links correspond to pair-wise similarities. overview

Installation

pip3 install -r requirements.txt

Datasets

We provide an example dataset Coffee in this repo. You may download the full UCR datasets here. Multivariate datasets are provided in this link.

Quick Start

We use Coffee as an example to show how to run the code. You may easily try other datasets with arguments --dataset. We will show how to get the results for DTW+1NN, ResNet, and SimTSC.

First, prepare the dataset with

python3 create_dataset.py

Then install the python wrapper of UCR DTW library with

git clone https://github.com/daochenzha/pydtw.git
cd pydtw
pip3 install -e .
cd ..

Then compute the dtw matrix for Coffee with

python3 create_dtw.py
  1. For DTW+1NN:
python3 train_knn.py
  1. For ResNet:
python3 train_resnet.py
  1. For SimTSC:
python3 train_simtsc.py

All the logs will be saved in logs/

Multivariate Datasets Quick Start

  1. Download the datasets and pre-computed DTW with this link.

  2. Unzip the file and put it into datasets/ folder

  3. Prepare the datasets with

python3 create_dataset.py --dataset CharacterTrajectories
  1. For DTW+1NN:
python3 train_knn.py --dataset CharacterTrajectories
  1. For ResNet:
python3 train_resnet.py --dataset CharacterTrajectories
  1. For SimTSC:
python3 train_simtsc.py --dataset CharacterTrajectories

Descriptions of the Files

  1. create_dataset.py is a script to pre-process dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  • --shot: how many training labels are given in each class
  1. create_dtw.py is a script to calculate pair-wise DTW distances of a dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  1. train_knn.py is a script to do classfication DTW+1NN of a dataset. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  1. train_resnet.py is a script to do classfication of a dataset with ResNet. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  1. train_simtsc.py is a script to do classfication of a dataset with SimTSC. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  • --K: number of neighbors per node in the constructed graph
  • --alpha: the scaling factor of the weights of the constructed graph
Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022