Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Overview

Euro-Truck-Simulator-2-Lane-Assist

Lane assist for ETS2, built with the ultra-fast-lane-detection model.

This project was made possible by the amazing people behind the original Ultra Fast Lane Detection paper. In addition to ibaiGorordo for his example scripts for Pytorch and rdbender for his sun valley theme for ttk.

Example Video

It is important to note that in the video I overlayed the laneAssist window on top of ETS2, unfortunately I do not yet know how to get it on top without messing with the screen capture.

Installation

Copy the repository ( Code -> Download zip ) and unpack it to a folder. Now install all the requirements.

Requirements

You must have at least python 3.7 installed for pytorch to work. To install pytorch go to their website and select the appropriate options. If you have an nvidia graphics card then select cuda, otherwise go for cpu. If you download cuda then you also have to download the cuda api from NVIDIA.

Other requirements can be installed with pip like this (if you have > python 3.10, then use pip3.10):

pip3 install -r requirements.txt

Lane Detection models

In addition to the normal requirements this application requires a lane detection model to work. This is a new deeper model from Adorable Jiang. So far from the very little testing all the models work. These models will likely run slower but work better, I have added support for these so choose if you want these or the defaults.

To download a pretrained model go to the Ultra Fast Lane Detection github page and scroll down until you see Trained models.

There are two different models to choose from. CUlane is a more stable model, but might not work in more difficult situations (like the road being white). On the other hand Tusimple is a more sporadic model that will almost certainly work in any situation. It is also worth noting that Tusimple in some cases requires some of the top of the dashboard and steering wheel to show, while CUlane doesn't. There is a tradeoff to both but I have included a way to switch between them while running the app, so downloading both of them is no issue. After you have downloaded a model, make a models folder in the root folder of the app (the folder where MainFile.py is) and move the model there.

Preparations

Before even starting the app make sure your ETS2 or any other game is in borderless mode. It is not required for the app to work, but for setting it up it is highly recommended. Also disable automatic indicators in game. To start the app, open a command prompt or terminal in the app's folder ( on windows this can be done by holding alt and right clicking ). Once the terminal is open type:

python3 MainFile.py

This will start the application and you should see two windows. One is the main window where you can start the program and change the settings. The other is the preview to show you what the program sees. Don't worry if it's black, that doesn't mean that it isn't working.

Before pressing Toggle Enable it is important to head over to the settings to configure a couple of important options.

The first is to change the position of the video capture from the general tab. I recommend starting up ETS 2 and setting the game on pause. Then move the window around by changing the position values (I recommend setting them to 0x0 and then going from there) so that the app sees the road, but preferably not the steering wheel as this can throw off the lane detection. Even though it's not recommended you might also need to change the dimensions of the screen capture. This might have to be done on 1080 or 4k monitors for example. Just if you do try to keep the aspect ratio the same (16:9)

The second important option is your input device. Even if you play on a keyboard you must have a controller selected otherwise the app will crash. The default selection is for my G29. If you also have one then be sure to make sure the controller is correct, after that you can head over to the next step.

If you do not play on a G29 then select your controller and additionally select the steering axis ( the blue slider will move with the axis ) and the button to toggle the Lane Assist ( this can usually be found by searching on google for controller button numbers ). In addition you will have to select your indicator buttons.

After that go to the final tab, and if you do have a nvidia gpu then you can enable Use GPU, after that you can hit Change Model.

Finally if you want to save your settings, most of them can be easily changed by editing MainFile.py

Usage

Once all the preparations are done let's actually use the lane assist. When you start the program it will make a virtual xbox 360 controller. You have to set the ingame steering axis to this controller, it will not recognize the controller unless put it as a secondary device. Under the main device (Should be Keyboard + controller) there are a multitude of slots, one of these slots must be the 360. This controller follows your own wheel/gamepad so managing to set it in the settings can be hard. Unfortunately this virtual controller means you will lose all force feedback from your main wheel.

Once the controller is setup in game it's time to use the app. To start the lane assist you can either press the set button on your controller or manually toggle it with Toggle Enable. You should see the lane show up on the preview and after that, Happy Trucking!

You might also like...
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

 CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Code for the IJCAI 2021 paper
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Use tensorflow to implement a Deep Neural Network for real time lane detection
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

Comments
  • "Use GPU" not functioning properly

    Hi there, I believe that "Use GPU" isn't working properly, I'm running Python 3.8.5 & OpenCV compiled with CUDA enabled as well as the Drivers and Toolkits needed.

    Clicking "Use GPU" does not save the checkmark (is that intended?), and the FPS remains the same, so I believe that it has no effect.

    Any tips to get it running with the GPU? It's unusable with 1.6 FPS so I'd love to get this working at a higher frame rate, thank you!

    PS: My GPU is a RTX 2060 so it should fit the specs.

    opened by ceddose 7
  • Software crashes upon pressing

    Software crashes upon pressing "settings"

    I followed the installation video, step by step and got the software installed. Upon launch, I press settings where the whole software crashes. I get the message "NameError: name 'wheel' is not defined. Screenshot_1

    opened by shambala12 3
  • V0.1.4

    V0.1.4

    V0.1.4 - 20.8.2022

    Minor Update

    Fixed

    • Removed a debug print.
    • Removed reduntant width and height from MainFile.py
    • Set default screencapture position to 0x0 to avoid confusion.
    opened by Tumppi066 0
Releases(v.1.0.0)
  • v.1.0.0(Aug 8, 2022)

    It seems that there is a problem with python 3.11 and 3.10 during installation of pyarrow, to fix this downgrade your python version to 3.9

    (This is fixed with the experimental version, as pyarrow is no longer a requirement.)

    Either download updater.exe or updater.py

    • They are both the same application, but I got some requests for an exe so it is now included. The exe will not detect the current installed version, so the .py is superior.
    • The installation script will always download the most up to date version of the app (optionally even development versions). It will also handle updates and show the current version change log.

    Current installer version is 0.5 (18.11.2022):

    • Added full support for the experimental branch, to see the current features head to my Trello.

    This is the only "release" the app will get (for the foreseeable future atleast) as the installation script always downloads the newest source.

    Source code(tar.gz)
    Source code(zip)
    updater.exe(9.25 MB)
    updater.py(13.36 KB)
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022