A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

Overview

OutliersSlidingWindows

A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

Dataset generation

The original datasets, namely Higgs and Cover, are provided (compressed) in the data folder. One can download and preprocess the datasets as follows:

wget https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz
cat HIGGS.csv.gz | gunzip | cut -d ',' -f 23,24,25,26,27,28,29 > higgs.dat

wget https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz
gunzip covtype.data.gz

The script datasets.sh decompresses the zipped original datasets and generates the artificial datasets used in the paper. In particular, the program InjectOutliers takes a dataset and injects artificial outliers. It takes as an argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • p, the probability with which to inject an outlier after every point
  • r, the scaling factor for the norm of the outlier points
  • d, the dimension of the points

The program GenerateArtificial generates automatically a dataset with points in a unit ball with outliers on the suface of a ball of radius r. It takes as an argument:

  • out, the path to the output file
  • p, the probability with which to inject an outlier
  • r, the radius of the outer ball
  • d, the dimension of the points

Running the experiments

The script exec.sh runs a representative subset of the experiments presented in the paper.

The program Main runs the experiments on the comparison of our k-center algorithm with the sequential ones. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • k, the number of centers
  • z, the number of outliers
  • N, the window size
  • beta, eps, lambda, parameters of our method
  • minDist, maxDist, parameters of our method
  • samp, the number of candidate centers for sampled-charikar
  • doChar, if set to 1 executes charikar, else it is skipped

It outputs, in the folder out/k-cen/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the four methods, the update times, the query times, the memory usage and the clustering radius.

The program MainLambda runs the experiments on the sensitivity on lambda. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • k, the number of centers
  • z, the number of outliers
  • N, the window size
  • beta, eps, lambda, parameters of our method (lambda unused)
  • minDist, maxDist, parameters of our method
  • doSlow, if set to 1 executes the slowest test, else it is skipped

It outputs, in the folder out/lam/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the four methods, the update times, the query times, the memory usage due to histograms, the total memory usage and the clustering radius.

The program MainEffDiam runs the experiments on the effective diameter algorithms. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • alpha, fraction fo distances to discard
  • eta, lower bound on ratio between effective diameter and diameter
  • N, the window size
  • beta, eps, lambda, parameters of our method
  • minDist, maxDist, parameters of our method
  • doSeq, if set to 1 executes the sequential method, else it is skipped

It outputs, in the folder out/diam/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the two methods, the update times, the query times, the memory usage and the effective diameter estimate.
Owner
PaoloPellizzoni
PaoloPellizzoni
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022