A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

Overview

OutliersSlidingWindows

A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

Dataset generation

The original datasets, namely Higgs and Cover, are provided (compressed) in the data folder. One can download and preprocess the datasets as follows:

wget https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz
cat HIGGS.csv.gz | gunzip | cut -d ',' -f 23,24,25,26,27,28,29 > higgs.dat

wget https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz
gunzip covtype.data.gz

The script datasets.sh decompresses the zipped original datasets and generates the artificial datasets used in the paper. In particular, the program InjectOutliers takes a dataset and injects artificial outliers. It takes as an argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • p, the probability with which to inject an outlier after every point
  • r, the scaling factor for the norm of the outlier points
  • d, the dimension of the points

The program GenerateArtificial generates automatically a dataset with points in a unit ball with outliers on the suface of a ball of radius r. It takes as an argument:

  • out, the path to the output file
  • p, the probability with which to inject an outlier
  • r, the radius of the outer ball
  • d, the dimension of the points

Running the experiments

The script exec.sh runs a representative subset of the experiments presented in the paper.

The program Main runs the experiments on the comparison of our k-center algorithm with the sequential ones. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • k, the number of centers
  • z, the number of outliers
  • N, the window size
  • beta, eps, lambda, parameters of our method
  • minDist, maxDist, parameters of our method
  • samp, the number of candidate centers for sampled-charikar
  • doChar, if set to 1 executes charikar, else it is skipped

It outputs, in the folder out/k-cen/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the four methods, the update times, the query times, the memory usage and the clustering radius.

The program MainLambda runs the experiments on the sensitivity on lambda. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • k, the number of centers
  • z, the number of outliers
  • N, the window size
  • beta, eps, lambda, parameters of our method (lambda unused)
  • minDist, maxDist, parameters of our method
  • doSlow, if set to 1 executes the slowest test, else it is skipped

It outputs, in the folder out/lam/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the four methods, the update times, the query times, the memory usage due to histograms, the total memory usage and the clustering radius.

The program MainEffDiam runs the experiments on the effective diameter algorithms. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • alpha, fraction fo distances to discard
  • eta, lower bound on ratio between effective diameter and diameter
  • N, the window size
  • beta, eps, lambda, parameters of our method
  • minDist, maxDist, parameters of our method
  • doSeq, if set to 1 executes the sequential method, else it is skipped

It outputs, in the folder out/diam/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the two methods, the update times, the query times, the memory usage and the effective diameter estimate.
Owner
PaoloPellizzoni
PaoloPellizzoni
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021