Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Overview

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"


Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition

Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
Hua Zhang, Ruoyun Gou, Jili Shang, Fangyao Shen, Yifan Wu and Guojun Dai

Abstract: Speech emotion recognition (SER) is a difficult and challenging task because of the affective variances between different speakers. The performances of SER are extremely reliant on the extracted features from speech signals. To establish an effective features extracting and classification model is still a challenging task. In this paper, we propose a new method for SER based on Deep Convolution Neural Network (DCNN) and Bidirectional Long Short-Term Memory with Attention (BLSTMwA) model (DCNN-BLSTMwA). We first preprocess the speech samples by data enhancement and datasets balancing. Secondly, we extract three-channel of log Mel-spectrograms (static, delta, and delta-delta) as DCNN input. Then the DCNN model pre-trained on ImageNet dataset is applied to generate the segment-level features. We stack these features of a sentence into utterance-level features. Next, we adopt BLSTM to learn the high-level emotional features for temporal summarization, followed by an attention layer which can focus on emotionally relevant features. Finally, the learned high-level emotional features are fed into the Deep Neural Network (DNN) to predict the final emotion. Experiments on EMO-DB and IEMOCAP database obtain the unweighted average recall (UAR) of 87.86 and 68.50%, respectively, which are better than most popular SER methods and demonstrate the effectiveness of our propose method.

link to paper

Requirements

The project has been tested on a python=3.7 on Ubuntu 20.04 with the following packages:

tensorflow=2.7.0
librosa=0.8.1
scikit-learn=1.0.1

Uses librosa to read files, which needs sndfile.
Use sudo apt-get install libsndfile1 to install sndfile library

Usage

This repository can be used in the following ways:

  1. Using train.py.
    i. Download the RAVDESS dataset (only this dataset is supported as of now) and extract it within the dataset directory. Then run the commands below to move all files into the .dataset/ directory from indivisual sub folders like .dataset/Actor-xx. Run these from within the dataset directory. Make sure to be in the .dataset/ directory before running these comannds from a linux terminal.
    find . -mindepth 2 -type f -print -exec mv {} . \;  
    rm -r Actor_*
    Then 
    
    ii. Run train.py with required options. Use python train.py -h to check all options available. A saved_model will be put in the saved_model directory.
    iii. Use infer.py to run inference on a set of files.
  2. Using SpeechModel.py to get a Keras Model into your code. This model follows specifications mentioned in the paper. You may write your own dataset code.
    Example:
    # Your own dataset architecture
    from SpeechModel import SpeechModel
    SP = SpeechModel
    model = SP.create_model()
    # Rest of model training code
    
  3. Using just the load_wav and get_framed_log_melspectrogram functions from utils.py, you can write your own dataset funcion, as well as your own model. This function returns a (num_frames, 64, 64, 3) shaped array that can be fed to a TimeDistributed network of your choice.

Model Description

The model uses a TimeDistributed layer to feed all segments of a audio file that have been converted into 3 channel images to a pretrained CNN network (in this case, resnet50_v2, trained on imagenet). Following this, we have bi-lstm layers and attention layers. Then, there are Fully Connected Layers with dropout and finally, classification with 8 nodes.


(Image credits: Paper cited below)

Example usage

Training

  • Use python train.py -h to see a list of arguments.
  • python train.py 30 to train the model for 30 epochs

Inference

(Still to be implemented)

Limitations

  1. Currently this repo only supports dataset preparation for the RAVDESS model since different datasets describe their labels differently. You can still use this repo with other datasets by defining your own function to load the datasets and using the get_framed_log_melspectrograms function from utils.py.
    Then you may use SpeechModel.py to create a model based on specifications form the paper and train.
  2. Since I couldn't find a pretrained AlexNet model and didn't have the resources myself to train one from scratch, I used a pretrained ResNet 50 model. This may affect the performance and not match the results given by the authors.

Credits and acknowledgements:

I did this work for a hackathon. This method did not produce the best results for my use case. I suspect this was due to the dataset being very noisy.

Citation

AUTHOR=Zhang Hua, Gou Ruoyun, Shang Jili, Shen Fangyao, Wu Yifan, Dai Guojun
    
TITLE=Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition  
    
JOURNAL=Frontiers in Physiology     
    
VOLUME=12      
    
YEAR=2021
    
PAGES=177   
        
URL=https://www.frontiersin.org/article/10.3389/fphys.2021.643202     
    
DOI=10.3389/fphys.2021.643202    
    
ISSN=1664-042X   

ABSTRACT=Speech emotion recognition (SER) is a difficult and challenging task because of the affective variances between different speakers. The performances of SER are extremely reliant on the extracted features from speech signals. To establish an effective features extracting and classification model is still a challenging task. In this paper, we propose a new method for SER based on Deep Convolution Neural Network (DCNN) and Bidirectional Long Short-Term Memory with Attention (BLSTMwA) model (DCNN-BLSTMwA). We first preprocess the speech samples by data enhancement and datasets balancing. Secondly, we extract three-channel of log Mel-spectrograms (static, delta, and delta-delta) as DCNN input. Then the DCNN model pre-trained on ImageNet dataset is applied to generate the segment-level features. We stack these features of a sentence into utterance-level features. Next, we adopt BLSTM to learn the high-level emotional features for temporal summarization, followed by an attention layer which can focus on emotionally relevant features. Finally, the learned high-level emotional features are fed into the Deep Neural Network (DNN) to predict the final emotion. Experiments on EMO-DB and IEMOCAP database obtain the unweighted average recall (UAR) of 87.86 and 68.50%, respectively, which are better than most popular SER methods and demonstrate the effectiveness of our propose method.
Owner
Ankush Malaker
Result driven, deep learning engineer with a passion to solve problems using computers and deep learning.
Ankush Malaker
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Akshat Surolia 2 May 11, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022