Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Overview

RuleRec

These are our datasets and implementation for the paper:

Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang, Yiqun Liu, Shaoping Ma, and Xiang Ren. 2019. Jointly Learning Explainable Rules for Recommendation with Knowledge Graph. In TheWebConf'19.

Please cite our paper if you use our datasets or codes. Thanks!

@inproceedings{ma2019jointly,
  title={Jointly Learning Explainable Rules for Recommendation with Knowledge Graph},
  author={Ma, Weizhi and Zhang, Min and Cao, Yue and Jin, Woojeong and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping and Ren, Xiang},
  booktitle={The World Wide Web Conference},
  pages={1210--1221},
  year={2019},
  organization={ACM}
}

If you have any problem about this work, you can contact Weizhi Ma (mawz12 AT hotmail.com).

RuleRec Datasets

The constructed datasets (two scenarios: Amazon cellphone and Amazon electronic) can be found here, which contain several parts:

Recommendation Data:

train.txt, test.txt: user-item interaction data.

Formatting: 
	user id \t item id

item_dic.txt: A python dic, key = item id in Amazon, value = item id here.

Item Attributes:

title.txt, brand.txt, description.txt: item attributes.

Formatting: 
	item id in Amazon \t the title/brand/description of this item

Item Associations:

also_buy.txt, also_view.txt, buy_after_view.txt, buy_together.txt: item associations.

Formatting:
	item id in Amazon \t items that have also\_buy/also\_view/buy\_after\_view/buy\_together association with this item, split by ' '

Entity Linking Data:

title_entities.txt, brand_entities.txt, description_entities.txt: entity linking results on freebase.

Formatting:
	item id in Amazon \t entity name \t entity id in Freebase

Path data:

KGData/*/rule_score.txt: As Freebase is an extremely large knowledge graph, only the related paths in the knowledge graph are recorded in this file. The head and tail entity of each path linked by at least one item.

training_pairs.txt and usercandidates.txt are two files sampled for rule learning and recommendation. You can replace them with other sampling results. The formatting of training_pairs.txt is 'user id : [positive item id, negative item id]'.



Besides, the original Amazon datasets (including user-item interaction history and item associations) are provided by Professor Mcauley. You can download them here.

Rule Learning Codes

If you want to use these codes, you should download RuleRec dataset and put them together first.

getItemItemDic.py: Enumerate all possible rules.

selectRules.py: Rule selection (rule features for jointly learning will also be generated in this step).

getFeatures.py: Calculate features based on the selected rules for item recommendation.

Environments: Python 3.6.3

sklearn = 0.19.1

numpy = 1.13.3

# Example:
> python getItemItemDic.py Cellphone abu
> python selectRules.py Cellphone abu 50
> python getFeatures.py Cellphone abu 50

RuleRec(BPRMF) Codes:

This implementation is based on MyMediaLiteJava. Both codes and jar file are provided.

The evaluation datasets can be downloaded from here, which is generated from RuleRec Data and contains both rule selection features and rule features.

Environments: Java, version 1.6 or later

# Example 1: Use Cellphone dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-file=./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt 
# output:[email protected]=0.34968 [email protected]=0.48024 [email protected]=0.28287 [email protected] num_users=27840 num_items=100 num_lists=27840

# Example 2: Use Cellphone dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.2 --ruleselectTrain=./RuleRecInput/Cellphone/ruleselect/ --ruleselectResult=./RuleRecInput/Cellphone/ruleselect/ 
# output:[email protected]=0.36430 [email protected]=0.49429 [email protected]=0.29536 [email protected]=0.23214 num_users=27840 num_items=100 num_lists=27840

# Example 3: Use Electronic dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt 
# output:[email protected]=0.20694 [email protected]=0.29726 [email protected]=0.17284 [email protected]=0.13483 num_users=18223 num_items=100 num_lists=18223

# Example 4: Use Electronic dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.005 --ruleselectTrain=./RuleRecInput/Electronic/ruleselect/ --ruleselectResult=./RuleRecInput/Electronic/ruleselect/ 
# output:[email protected]=0.20798 [email protected]=0.29979 [email protected]=0.17407 [email protected]=0.13570 num_users=18223 num_items=100 num_lists=18223
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022