Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Overview

Reproducing-BowNet

Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper: Learning Representations by Predicting Bags of Visual Words by Gidaris et al S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord, “Learning Representations by Predicting Bags of Visual Words,” ArXiv, 27-Feb-2020. [Online]. Available: https://arxiv.org/abs/2002.12247. [Accessed: 15-Nov-2020].

Group project for UWaterloo course SYDE 671 - Advanced Image Processing by Harry Nguyen, Stone Yun, Hisham Mohammad

Code base is implemented with PyTorch. Dataloader is adapted from Github released by authors of the RotNet paper: https://github.com/gidariss/FeatureLearningRotNet

Our model definitions are in model.py. Custom loss and layer class definitions are in layers.py

See dependencies.txt for list of libraries that need to be installed. Pip install or conda install both work

Before running the experiments:

Inside the project code, create a folder ./datasets/CIFAR, download the dataset CIFAR100 from https://www.cs.toronto.edu/~kriz/cifar.html and put in the folder.

For running the code:

Pretrained weights of BowNet and RotNet from our best results are in saved_weights directory. To generate your own RotNet checkpoint, running rotation_prediction_training.py will train a new RotNet from scratch. The checkpoint is saved as rotnet1_checkpoint.pt

To run rotnet_linearclf.py or rotnet_nonlinearclf.py, you need to have the checkpoint file of pretrained RotNet, download here (eg. saved_weights/rotnet.pt). These scripts load the pretrained RotNet and use its feature maps to train a classifier on CIFAR-100 prediction.

$python rotnet_linearclf.py --checkpoint /path/to/checkpoint

$python rotnet_nonlinearclf.py --checkpoint /path/to/checkpoint

bownet_plus_linearclf_cifar_training.py takes pretrained BowNet and uses feature maps to train linear classifier on CIFAR-100. kmeans_cluster_and_bownet_training.py loads pretrained RotNet, performs KMeans clustering of feature map, then trains BowNet on BOW reconstruction. Thus, you'll need pretrained BowNet and RotNet checkpoints respectively.

We also include a pre-computed RotNet codebook for K = 2048 clusters. If you include the path to it for kmeans_cluster_and_bownet_training.py the script will skip the codebook generation step and go straight to BOW reconstruction training

$python bownet_plus_linearclf_cifar_training.py --checkpoint /path/to/bownet/checkpoint

$python kmeans_cluster_and_bownet_training.p --checkpoint /path/to/rotnet/checkpoint [optional: --rotnet_vocab /path/to/rotnet/vocab.npy]

Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023