License Plate Detection Application

Overview

LicensePlate_Project ๐Ÿš— ๐Ÿš™

[Project] 2021.02 ~ 2021.09 License Plate Detection Application

Overview


1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ผ๋ฒจ๋ง

์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด '๋ฒˆํ˜ธํŒ ๊ธ€์ž'์™€ '๋ฒˆํ˜ธํŒ ๋„ค ๊ผญ์ง“์ ์˜ x,y ์ขŒํ‘œ'๋ฅผ ๋ผ๋ฒจ๋ง ํ•œ๋‹ค.

๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€
๋ผ๋ฒจ๋ง 20210210_222919.jpg 1481 2773 2043 2689 2043 2794 1486 2883 36์กฐ 2428

ํ…์ŠคํŠธ ํŒŒ์ผ๋กœ ์ €์žฅ๋œ ๋ผ๋ฒจ๋ง ์ •๋ณด๋Š” ๋ฒˆํ˜ธํŒ ๋„ค ๊ผญ์ง“์ ์˜ ์ ˆ๋Œ€ ์ขŒํ‘œ์™€ ๋ฒˆํ˜ธํŒ ๊ธ€์ž๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ 20%๋ฅผ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ„์–ด ๋ฐ์ดํ„ฐ์…‹ ์ค€๋น„๋ฅผ ๋งˆ์นœ๋‹ค. ์ตœ์ข… ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ
1635์žฅ 409์žฅ

2. YOLOv5 ํ•™์Šต (Pytorch-YOLOv5)

  • ์ฐธ๊ณ : https://github.com/ultralytics/yolov5

  • ์ธํ’‹ ๋ฐ์ดํ„ฐ ์ค€๋น„
    ์›๋ณธ ์ด๋ฏธ์ง€๋Š” ๋ฒˆํ˜ธํŒ ์˜์—ญ์„ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๊ณง์žฅ YOLO์˜ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ธฐ ๋•Œ๋ฌธ์—, YOLO์˜ ์ž…๋ ฅ ํ˜•์‹์— ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๊ฐ ์ด๋ฏธ์ง€ ๋งˆ๋‹ค ์ด๋ฏธ์ง€ ํŒŒ์ผ๋ช…๊ณผ ๋™์ผํ•œ ์ด๋ฆ„์˜ ํ…์ŠคํŠธ ํŒŒ์ผ์„ ๋งŒ๋“ค์–ด bounding box์˜ ์ขŒํ‘œ ์ •๋ณด๋ฅผ class, x_center, y_center, width, height์˜ ํฌ๋งท์˜ ๋ฌธ์ž์—ด๋กœ ์ €์žฅํ•œ๋‹ค. ์ด ๋•Œ, class๋ฅผ ์ œ์™ธํ•œ ๋‚˜๋จธ์ง€ ๊ฐ’์€ ๋ชจ๋‘ 0-1 ์‚ฌ์ด์˜ ์ƒ๋Œ€ ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

โ”œโ”€โ”€ Yolo_input
    โ”œโ”€โ”€ train
    โ”‚   โ”œโ”€โ”€ images
    โ”‚   โ”‚   โ”œโ”€โ”€ 1.jpg
    โ”‚ 	โ”‚   โ”œโ”€โ”€ 2.jpg
    โ”‚ 	โ”‚  	โ”‚     :
    โ”‚ 	โ”‚  		  
    โ”‚   โ”œโ”€โ”€ labels
    โ”‚	    โ”œโ”€โ”€ 1.txt
    โ”‚	    โ”œโ”€โ”€ 2.txt
    โ”‚	   	โ”‚     :
    โ”‚	
    โ””โ”€โ”€ val
 	    โ”œโ”€โ”€ images
 	    โ”œโ”€โ”€ labels
  • dataset.yaml ์ค€๋น„
    Custom ๋ฐ์ดํ„ฐ์…‹์— YOLOv5 ํ•™์Šต ์ฝ”๋“œ๋ฅผ ๊ทธ๋Œ€๋กœ ์“ธ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ฐ์ดํ„ฐ์…‹ ์„ธํŒ… ๋ถ€๋ถ„๋งŒ ์ˆ˜์ •ํ•œ๋‹ค. dataset.yaml ํŒŒ์ผ์— ํ•™์Šต, ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ์™€ ๊ฐ์ฒด ํด๋ž˜์Šค ์ •๋ณด๋ฅผ ๊ธฐ์ž…ํ•œ๋‹ค. ์šฐ๋ฆฌ ํ”„๋กœ์ ํŠธ์˜ ๊ฒฝ์šฐ ํƒ์ง€ํ•˜๋Š” ๊ฐ์ฒด๊ฐ€ ์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ํ•˜๋‚˜์ด๋ฏ€๋กœ ํด๋ž˜์Šค ๋ผ๋ฒจ์„ 0์œผ๋กœ, ์ด๋ฆ„์„ 'plate' ๋กœ ํ•œ๋‹ค.

  • YOLO ๋ชจ๋ธ ์„ ํƒ
    ๋ณธ ํ”„๋กœ์ ํŠธ๋ฅผ ์œ„ํ•ด ๊ฐ€์žฅ ์ž‘๊ณ  ๋น ๋ฅธ ๋ชจ๋ธ์ธ YOLOv5s๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.


3. ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ ํ•™์Šต

  • ์‚ฌ์šฉํ•œ ๋ชจ๋ธ : timm์œผ๋กœ ์‚ฌ์ „ํ•™์Šต๋œ Resnet18 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค

  • ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ๊ฐ’์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“  ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์—์„œ ๊ฐ ์ถ•์œผ๋กœ 1%์”ฉ ๋Š˜์ธ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: ์ „๋‹จ ๋ณ€ํ™˜(shear transformation), ์‚ฌ์ง„ํ•ฉ์„ฑ, ๋ฐ๊ธฐ์กฐ์ ˆ, ๋ฆฌ์‚ฌ์ด์ฆˆ
      ์ž…๋ ฅ ์ด๋ฏธ์ง€๋ฅผ ์ „๋‹จ ๋ณ€ํ™˜ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด x, y์ถ•์œผ๋กœ ๋žœ๋คํ•˜๊ฒŒ ๋ณ€ํ™˜ํ•˜๋ฉด ๊ฒ€์€์ƒ‰ ์—ฌ๋ฐฑ ๋ถ€๋ถ„์ด ์ƒ๊ฒจ, ์ด ๋ถ€๋ถ„์„ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์—์„œ ๋žœ๋คํ•˜๊ฒŒ ๊ฐ€์ ธ์™€ ํ•ฉ์„ฑ์‹œ์ผฐ๋‹ค. ์ด ์ด๋ฏธ์ง€์— ๋žœ๋ค์œผ๋กœ ๋ฐ๊ธฐ์กฐ์ ˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ, 128x128 ์ด๋ฏธ์ง€๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์—ˆ๋‹ค.

    3. ๋ฌธ์ œ์  : ๊ฒ€์€์ƒ‰ ๋ถ€๋ถ„์„ ๋‹ค๋ฅธ ์‚ฌ์ง„์œผ๋กœ ํ•ฉ์„ฑ์‹œ์ผฐ๋”๋‹ˆ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์™€ ๊ดด๋ฆฌ๊ฐ์ด ์ƒ๊ฒจ ์„ฑ๋Šฅ ์ €ํ•˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: ์ „๋‹จ ๋ณ€ํ™˜, ๋ฐ๊ธฐ์กฐ์ ˆ, ๋ฆฌ์‚ฌ์ด์ฆˆ ์ž…๋ ฅ ์ด๋ฏธ์ง€์™€ ๋ผ๋ฒจ๋ง์„ ํ†ตํ•ด ์•Œ๋ ค์ง„ ๋ฒˆํ˜ธํŒ ๊ผญ์ง“์ ์˜ ์ขŒํ‘œ๋“ค์„ ์ „๋‹จ ๋ณ€ํ™˜ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ๋žœ๋ค ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด ์ด๋ฏธ์ง€์—์„œ ๋ฒˆํ˜ธํŒ์˜ ์ขŒํ‘œ๋ฅผ ๊ธฐ์ค€์œผ๋กœ margin์„ ์ฃผ๊ณ , ๊ทธ ์ง€์ ์œผ๋กœ๋ถ€ํ„ฐ ๋žœ๋คํ•˜๊ฒŒ ์ขŒํ‘œ๋ฅผ ์ฐ์–ด ์ด๋ฏธ์ง€๋ฅผ ์ž๋ฅธ ๊ฒƒ์„ ์‚ฌ์šฉ. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์—์„œ ๋‚˜์™”๋˜ ๊ฒ€์€ ์—ฌ๋ฐฑ ๋ถ€๋ถ„์ด ๋‚˜์˜ค์ง€ ์•Š์œผ๋ฏ€๋กœ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์™€ ๋” ๊ทผ์ ‘ํ•˜๋‹ค. ์ด ์ด๋ฏธ์ง€์— ๋žœ๋ค์œผ๋กœ ๋ฐ๊ธฐ์กฐ์ ˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ, 128x128 ์ด๋ฏธ์ง€๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์—ˆ๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • Output : ์ƒํ•˜์ขŒ์šฐ ๋„ค ๊ผญ์ง“์ ์— ๋Œ€ํ•œ X,Y ์ƒ๋Œ€์ขŒํ‘œ


4. ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ ํ•™์Šต

  • ์‚ฌ์šฉํ•œ ๋ชจ๋ธ : timm์œผ๋กœ ์‚ฌ์ „ํ•™์Šต๋œ Resnet18 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

  • ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ์— ๋Œ€ํ•œ ground truth๋ฅผ ์ด์šฉํ•˜์—ฌ (128, 256)์˜ ํฌ๊ธฐ๋กœ ํˆฌ์˜๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: Salt & Pepper ๋…ธ์ด์ฆˆ ์‹ค์ œ ์ฐจ๋Ÿ‰์˜ ๋ฒˆํ˜ธํŒ์€ ๋จผ์ง€ ๋ฐ ๋ฒŒ๋ ˆ์™€ ๊ฐ™์€ ์ด๋ฌผ์งˆ ๋•Œ๋ฌธ์— ์–ผ๋ฃฉ๋œ๋ฃฉํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๋žœ๋คํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ๊นŒ์ง€ ์ปค๋ฒ„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

    3. ๋ฌธ์ œ์  : ์‹ค์ œ ์ถ”๋ก  ๊ณผ์ •์—์„œ๋Š” ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์˜ˆ์ธก๋œ ๊ผญ์ง“์  ๊ฐ’์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ •๋ ฌ๋œ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๋ฏ€๋กœ, ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฐ›์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

  • ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ๋ฅผ x,y ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ๊ฐ ๋žœ๋คํ•˜๊ฒŒ ์ด๋™์‹œํ‚จ ํ›„ (128, 256)์˜ ํฌ๊ธฐ๋กœ ํˆฌ์˜๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: Salt & Pepper ๋…ธ์ด์ฆˆ, ๋ฐ๊ธฐ ์กฐ์ ˆ(์ „์ฒด ๋ฐ๊ฒŒ, ์ „์ฒด ์–ด๋‘ก๊ฒŒ, ๊ทธ๋ฆผ์ž) ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ์…‹์€ ๋Œ€๋ถ€๋ถ„ ๋‚ฎ์— ์ฐ์€ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€์˜€๊ธฐ ๋•Œ๋ฌธ์—, ํ…Œ์ŠคํŠธ ๋ฆฌํฌํŒ… ์‹œ ์•ผ๊ฐ„ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ๋Š” ์„ฑ๋Šฅ์ด ๋‚ฎ์•„์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ๊ธฐ ์กฐ์ ˆ ๋ฐ ๊ทธ๋ฆผ์ž ์ถ”๊ฐ€ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ™˜๊ฒฝ์˜ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋„๋ก ํ•˜์˜€๋‹ค.

    ์ถ”๋ก  ์‹œ ์‹ค์ œ ์ž…๋ ฅ๋˜๋Š” ์ด๋ฏธ์ง€ ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ• ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์˜ˆ์‹œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • Output : (๋ฐฐ์น˜์‚ฌ์ด์ฆˆ, 7, 45, 1) ๋ชจ์–‘์˜ ํ…์„œ
    7 -> 7๊ธ€์ž 45 -> 45๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ๋ฌธ์ž (['๊ฐ€', '๋‚˜', '๋‹ค', '๋ผ', '๋งˆ', '๊ฑฐ', '๋„ˆ', '๋”', '๋Ÿฌ', '๋จธ', '๋ฒ„', '์„œ', '์–ด', '์ €', '๊ณ ', '๋…ธ', '๋„', '๋กœ', '๋ชจ', '๋ณด', '์†Œ', '์˜ค', '์กฐ', '๊ตฌ', '๋ˆ„', '๋‘', '๋ฃจ', '๋ฌด', '๋ถ€', '์ˆ˜', '์šฐ', '์ฃผ', 'ํ—ˆ', 'ํ•˜', 'ํ˜ธ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])


5. pt >> onnx >> pb >> tflite ๋ณ€ํ™˜

  • YOLOv5
    ์ œ๊ณตํ•ด์ฃผ๋Š” export.py๋ฅผ ์‚ฌ์šฉํ•ด TensorFlow Lite ํŒŒ์ผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด ๋•Œ, Non Max Suppression ๋ถ€๋ถ„์€ TensorFlow Lite๋กœ ๋ณ€ํ™˜๋˜์ง€ ์•Š์•„ ์•ˆ๋“œ๋กœ์ด๋“œ ์ŠคํŠœ๋””์˜ค ์ฝ”๋“œ๋ฅผ ์งค ๋•Œ ๋”ฐ๋กœ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. YOLO์˜ ์ถœ๋ ฅ์œผ๋กœ ๋‚˜์˜ค๋Š” (1, 3024, 6)์˜ ํ…์„œ๋Š” 3024๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์™€, ๊ฐ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์˜ x_center, y_center, width, height, confidence, ๊ฐ์ฒด ํด๋ž˜์Šค ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ๊ฐ€๋Šฅํ•œ 3024๊ฐœ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ค‘ ๊ฐ€์žฅ ํฐ confidence ๊ฐ’์„ ๊ฐ€์ง€๋Š” ํ•˜๋‚˜์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๋งŒ์„ ์ถ”๋ก ์˜ ๊ฒฐ๊ณผ๋กœ ๋งŒ๋“œ๋Š” ์ฝ”๋“œ์ด๋‹ค (Non Max Suppression).
float max_conf = detectionResult[0][0][4];
        int idx = 0;
        for(int i = 0; i<3024; i++){
            if(max_conf < detectionResult[0][i][4]){
                max_conf = detectionResult[0][i][4];
                idx = i;
            }
        }
  • ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ & ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ
    ๋ชจ๋ธ ํ•™์Šต ์‹œ, ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ€์žฅ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๋Š” ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๋ฅผ onnx ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ณ , tflite_converter.py๋ฅผ ํ†ตํ•ด ์ตœ์ข…์ ์œผ๋กœ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ƒ์—์„œ ๋ชจ๋ธ์„ ๋กœ๋“œํ•  ๋•Œ ์“ฐ์ด๋Š” TensorFlow Lite ํŒŒ์ผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

6. ์•ˆ๋“œ๋กœ์ด๋“œ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ œ์ž‘

์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์•ž์„œ ๋งŒ๋“  ํ•™์Šต๋œ ๋ชจ๋ธ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ์ฝ”๋“œ๋ฅผ ๋งŒ๋“ค๊ณ , ์ด๋ฅผ ์•ˆ๋“œ๋กœ์ด๋“œ ์ŠคํŠœ๋””์˜ค์˜ MainActivity์— ๋ถˆ๋Ÿฌ์™€์„œ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” YOLOv5(DHDetectionModel.java), ๊ผญ์ง“์  ์˜ˆ์ธก(AlignmentModel.java), ๊ธ€์ž์˜ˆ์ธก(CharModel.java) ์ด ์„ธ ๊ฐ€์ง€ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ์ฝ”๋“œ๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. ์ถ”๋ก  ์ฝ”๋“œ์— ์‚ฌ์šฉ๋œ ๋ฉ”์†Œ๋“œ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

  • ์ƒ์„ฑ์ž

    DHDetectionModel(Activity activity, Interpreter.Options options)
    AlignmentModel(Activity activity, Interpreter.Options options)
    CharModel(Activity activity, Interpreter.Options options)

    --> ๊ฐ ์ถ”๋ก  ์ธ์Šคํ„ด์Šค๋ฅผ ์ƒ์„ฑํ•  ๋•Œ, ๋ชจ๋ธ ์ธํ„ฐํ”„๋ฆฌํ„ฐ(mInterpreter)์™€ ๋ชจ๋ธ์— ๋“ค์–ด๊ฐ€๋Š” ์ž…๋ ฅ(mImageData)์— ๋Œ€ํ•ด์„œ ์ •์˜ํ•œ๋‹ค.

  • ๊ณตํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋œ ๋ฉ”์†Œ๋“œ

    MappedByteBuffer loadModelFile(Activity activity)

    --> tflite ํŒŒ์ผ์„ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ฉ”์†Œ๋“œ๋กœ ์ธํ„ฐํ”„๋ฆฌํ„ฐ ์ƒ์„ฑ์‹œ์— ์‚ฌ์šฉ๋œ๋‹ค.

    void convertBitmapToByteBuffer(Bitmap bitmap)

    --> ์ถ”๋ก ํ• ๋•Œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ๋“ค์–ด๊ฐ€๋Š” ์ž…๋ ฅ ํ˜•์‹์ธ ByteBuffer์˜ ํ˜•ํƒœ๋กœ ๋ฐ”๊พธ์–ด์ฃผ๋Š” ๋ฉ”์†Œ๋“œ์ด๋‹ค.

  • ์ถ”๋ก  ๋ฉ”์†Œ๋“œ

    • DHDetectionModel

      float[][] getProposal(Bitmap bm, Mat input)

      --> ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด float[2][5] ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ํƒ์ง€ํ•œ bounding box์˜ x, y, w, h, confidence์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. Yolov5์— nms๊ฐ€ tflite ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋”ฐ๋กœ nms ์ฝ”๋“œ๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค.

    • AlignmentModel

      float[] getCoordinate(Bitmap bitmap)

      --> DHDetectionModel์—์„œ ๋‚˜์˜จ ์ถœ๋ ฅ์„ ์ด์šฉํ•ด bounding box์˜ ํฌ๊ธฐ๋กœ ์ž๋ฅธ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด, float[8] ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๊ผญ์ง“์ ์˜ ๋„ค ์ขŒํ‘œ์˜ (x,y)๊ฐ’์„ ๋‹ด๊ณ ์žˆ๋‹ค.

    • CharModel

      String getString(Bitmap bm)

      --> AlignmentModel์—์„œ ๋‚˜์˜จ ์ถœ๋ ฅ์„ ์ด์šฉํ•ด ๋ฒˆํ˜ธํŒ ํฌ๊ธฐ๋กœ ์ด๋ฏธ์ง€๋ฅผ ์ž๋ฅธ ํ›„ ์ „๋‹จ๋ณ€ํ™˜์„ ์ด์šฉํ•ด ์ •๋ฉด์œผ๋กœ ๊ณง๊ฒŒ ํŽธ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด, String ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๋ฒˆํ˜ธํŒ์˜ ๊ธ€์ž ์ •๋ณด๋ฅผ ๋‹ด๊ณ ์žˆ๋‹ค.

  • ์ถ”๋ก  ์†๋„(FPS) ๋ฌธ์ œ ๊ฐœ์„ 
    ์ดˆ๊ธฐ์— ๋ชจ๋“  ๋ชจ๋ธ๋“ค์„ ์•ฑ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ์˜ค๋ž˜๊ฑธ๋ ค์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹ค์‹œ๊ฐ„ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค.

    1. YOLO ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ฐ์†Œ (640, 480) -> (256,192)
    2. GPU ๋Œ€๋ฆฌ์ž ์‚ฌ์šฉ
    3. ๋ฉ€ํ‹ฐ์Šค๋ ˆ๋”ฉ
  • ์ตœ์ข… ๋ชจ๋ธ๋ณ„ & ์ „์ฒด ์ถ”๋ก ์‹œ๊ฐ„

    ๋ชจ๋ธ ์ถ”๋ก ์‹œ๊ฐ„(millisecond)
    ๋ฒˆํ˜ธํŒ ํƒ์ง€ ๋ชจ๋ธ 45
    ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ 82
    ๊ธ€์ž ๋ชจ๋ธ 86
  • ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์˜ˆ

    ์˜ˆ์‹œ1 ์˜ˆ์‹œ2
    ์˜ˆ์‹œ1 ์˜ˆ์‹œ2

7. Google Play์— ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋“ฑ๋ก

๋‹ค์šด๋กœ๋“œ:

์„ค์น˜ ์ „ ์„ค์น˜ ํ›„
์˜ˆ์‹œ ์˜ˆ์‹œ2
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsortๅฎž็Žฐ็›ฎๆ ‡่ทŸ่ธช ๆœ€ๆ–ฐ็š„yoloxๅฐๅฐ้ฒœ~~๏ผˆyoloxๆญฃๅค„ๅœจ้ข‘็นๆ›ดๆ–ฐ้˜ถๆฎต๏ผŒๅ› ๆญค็›ดๆŽฅ้“พๆŽฅyoloxไป“ๅบ“ไฝœไธบๅญๆจกๅ—๏ผ‰ Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger ๐Ÿ” Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyแป…n Trฦฐแปng Lรขu 4 Nov 24, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe fรผr unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022