License Plate Detection Application

Overview

LicensePlate_Project ๐Ÿš— ๐Ÿš™

[Project] 2021.02 ~ 2021.09 License Plate Detection Application

Overview


1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ผ๋ฒจ๋ง

์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด '๋ฒˆํ˜ธํŒ ๊ธ€์ž'์™€ '๋ฒˆํ˜ธํŒ ๋„ค ๊ผญ์ง“์ ์˜ x,y ์ขŒํ‘œ'๋ฅผ ๋ผ๋ฒจ๋ง ํ•œ๋‹ค.

๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€
๋ผ๋ฒจ๋ง 20210210_222919.jpg 1481 2773 2043 2689 2043 2794 1486 2883 36์กฐ 2428

ํ…์ŠคํŠธ ํŒŒ์ผ๋กœ ์ €์žฅ๋œ ๋ผ๋ฒจ๋ง ์ •๋ณด๋Š” ๋ฒˆํ˜ธํŒ ๋„ค ๊ผญ์ง“์ ์˜ ์ ˆ๋Œ€ ์ขŒํ‘œ์™€ ๋ฒˆํ˜ธํŒ ๊ธ€์ž๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ 20%๋ฅผ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ„์–ด ๋ฐ์ดํ„ฐ์…‹ ์ค€๋น„๋ฅผ ๋งˆ์นœ๋‹ค. ์ตœ์ข… ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ
1635์žฅ 409์žฅ

2. YOLOv5 ํ•™์Šต (Pytorch-YOLOv5)

  • ์ฐธ๊ณ : https://github.com/ultralytics/yolov5

  • ์ธํ’‹ ๋ฐ์ดํ„ฐ ์ค€๋น„
    ์›๋ณธ ์ด๋ฏธ์ง€๋Š” ๋ฒˆํ˜ธํŒ ์˜์—ญ์„ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๊ณง์žฅ YOLO์˜ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ธฐ ๋•Œ๋ฌธ์—, YOLO์˜ ์ž…๋ ฅ ํ˜•์‹์— ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๊ฐ ์ด๋ฏธ์ง€ ๋งˆ๋‹ค ์ด๋ฏธ์ง€ ํŒŒ์ผ๋ช…๊ณผ ๋™์ผํ•œ ์ด๋ฆ„์˜ ํ…์ŠคํŠธ ํŒŒ์ผ์„ ๋งŒ๋“ค์–ด bounding box์˜ ์ขŒํ‘œ ์ •๋ณด๋ฅผ class, x_center, y_center, width, height์˜ ํฌ๋งท์˜ ๋ฌธ์ž์—ด๋กœ ์ €์žฅํ•œ๋‹ค. ์ด ๋•Œ, class๋ฅผ ์ œ์™ธํ•œ ๋‚˜๋จธ์ง€ ๊ฐ’์€ ๋ชจ๋‘ 0-1 ์‚ฌ์ด์˜ ์ƒ๋Œ€ ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

โ”œโ”€โ”€ Yolo_input
    โ”œโ”€โ”€ train
    โ”‚   โ”œโ”€โ”€ images
    โ”‚   โ”‚   โ”œโ”€โ”€ 1.jpg
    โ”‚ 	โ”‚   โ”œโ”€โ”€ 2.jpg
    โ”‚ 	โ”‚  	โ”‚     :
    โ”‚ 	โ”‚  		  
    โ”‚   โ”œโ”€โ”€ labels
    โ”‚	    โ”œโ”€โ”€ 1.txt
    โ”‚	    โ”œโ”€โ”€ 2.txt
    โ”‚	   	โ”‚     :
    โ”‚	
    โ””โ”€โ”€ val
 	    โ”œโ”€โ”€ images
 	    โ”œโ”€โ”€ labels
  • dataset.yaml ์ค€๋น„
    Custom ๋ฐ์ดํ„ฐ์…‹์— YOLOv5 ํ•™์Šต ์ฝ”๋“œ๋ฅผ ๊ทธ๋Œ€๋กœ ์“ธ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ฐ์ดํ„ฐ์…‹ ์„ธํŒ… ๋ถ€๋ถ„๋งŒ ์ˆ˜์ •ํ•œ๋‹ค. dataset.yaml ํŒŒ์ผ์— ํ•™์Šต, ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ์™€ ๊ฐ์ฒด ํด๋ž˜์Šค ์ •๋ณด๋ฅผ ๊ธฐ์ž…ํ•œ๋‹ค. ์šฐ๋ฆฌ ํ”„๋กœ์ ํŠธ์˜ ๊ฒฝ์šฐ ํƒ์ง€ํ•˜๋Š” ๊ฐ์ฒด๊ฐ€ ์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ํ•˜๋‚˜์ด๋ฏ€๋กœ ํด๋ž˜์Šค ๋ผ๋ฒจ์„ 0์œผ๋กœ, ์ด๋ฆ„์„ 'plate' ๋กœ ํ•œ๋‹ค.

  • YOLO ๋ชจ๋ธ ์„ ํƒ
    ๋ณธ ํ”„๋กœ์ ํŠธ๋ฅผ ์œ„ํ•ด ๊ฐ€์žฅ ์ž‘๊ณ  ๋น ๋ฅธ ๋ชจ๋ธ์ธ YOLOv5s๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.


3. ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ ํ•™์Šต

  • ์‚ฌ์šฉํ•œ ๋ชจ๋ธ : timm์œผ๋กœ ์‚ฌ์ „ํ•™์Šต๋œ Resnet18 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค

  • ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ๊ฐ’์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“  ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์—์„œ ๊ฐ ์ถ•์œผ๋กœ 1%์”ฉ ๋Š˜์ธ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: ์ „๋‹จ ๋ณ€ํ™˜(shear transformation), ์‚ฌ์ง„ํ•ฉ์„ฑ, ๋ฐ๊ธฐ์กฐ์ ˆ, ๋ฆฌ์‚ฌ์ด์ฆˆ
      ์ž…๋ ฅ ์ด๋ฏธ์ง€๋ฅผ ์ „๋‹จ ๋ณ€ํ™˜ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด x, y์ถ•์œผ๋กœ ๋žœ๋คํ•˜๊ฒŒ ๋ณ€ํ™˜ํ•˜๋ฉด ๊ฒ€์€์ƒ‰ ์—ฌ๋ฐฑ ๋ถ€๋ถ„์ด ์ƒ๊ฒจ, ์ด ๋ถ€๋ถ„์„ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์—์„œ ๋žœ๋คํ•˜๊ฒŒ ๊ฐ€์ ธ์™€ ํ•ฉ์„ฑ์‹œ์ผฐ๋‹ค. ์ด ์ด๋ฏธ์ง€์— ๋žœ๋ค์œผ๋กœ ๋ฐ๊ธฐ์กฐ์ ˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ, 128x128 ์ด๋ฏธ์ง€๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์—ˆ๋‹ค.

    3. ๋ฌธ์ œ์  : ๊ฒ€์€์ƒ‰ ๋ถ€๋ถ„์„ ๋‹ค๋ฅธ ์‚ฌ์ง„์œผ๋กœ ํ•ฉ์„ฑ์‹œ์ผฐ๋”๋‹ˆ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์™€ ๊ดด๋ฆฌ๊ฐ์ด ์ƒ๊ฒจ ์„ฑ๋Šฅ ์ €ํ•˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: ์ „๋‹จ ๋ณ€ํ™˜, ๋ฐ๊ธฐ์กฐ์ ˆ, ๋ฆฌ์‚ฌ์ด์ฆˆ ์ž…๋ ฅ ์ด๋ฏธ์ง€์™€ ๋ผ๋ฒจ๋ง์„ ํ†ตํ•ด ์•Œ๋ ค์ง„ ๋ฒˆํ˜ธํŒ ๊ผญ์ง“์ ์˜ ์ขŒํ‘œ๋“ค์„ ์ „๋‹จ ๋ณ€ํ™˜ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ๋žœ๋ค ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด ์ด๋ฏธ์ง€์—์„œ ๋ฒˆํ˜ธํŒ์˜ ์ขŒํ‘œ๋ฅผ ๊ธฐ์ค€์œผ๋กœ margin์„ ์ฃผ๊ณ , ๊ทธ ์ง€์ ์œผ๋กœ๋ถ€ํ„ฐ ๋žœ๋คํ•˜๊ฒŒ ์ขŒํ‘œ๋ฅผ ์ฐ์–ด ์ด๋ฏธ์ง€๋ฅผ ์ž๋ฅธ ๊ฒƒ์„ ์‚ฌ์šฉ. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์—์„œ ๋‚˜์™”๋˜ ๊ฒ€์€ ์—ฌ๋ฐฑ ๋ถ€๋ถ„์ด ๋‚˜์˜ค์ง€ ์•Š์œผ๋ฏ€๋กœ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์™€ ๋” ๊ทผ์ ‘ํ•˜๋‹ค. ์ด ์ด๋ฏธ์ง€์— ๋žœ๋ค์œผ๋กœ ๋ฐ๊ธฐ์กฐ์ ˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ, 128x128 ์ด๋ฏธ์ง€๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์—ˆ๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • Output : ์ƒํ•˜์ขŒ์šฐ ๋„ค ๊ผญ์ง“์ ์— ๋Œ€ํ•œ X,Y ์ƒ๋Œ€์ขŒํ‘œ


4. ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ ํ•™์Šต

  • ์‚ฌ์šฉํ•œ ๋ชจ๋ธ : timm์œผ๋กœ ์‚ฌ์ „ํ•™์Šต๋œ Resnet18 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

  • ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ์— ๋Œ€ํ•œ ground truth๋ฅผ ์ด์šฉํ•˜์—ฌ (128, 256)์˜ ํฌ๊ธฐ๋กœ ํˆฌ์˜๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: Salt & Pepper ๋…ธ์ด์ฆˆ ์‹ค์ œ ์ฐจ๋Ÿ‰์˜ ๋ฒˆํ˜ธํŒ์€ ๋จผ์ง€ ๋ฐ ๋ฒŒ๋ ˆ์™€ ๊ฐ™์€ ์ด๋ฌผ์งˆ ๋•Œ๋ฌธ์— ์–ผ๋ฃฉ๋œ๋ฃฉํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๋žœ๋คํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ๊นŒ์ง€ ์ปค๋ฒ„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

    3. ๋ฌธ์ œ์  : ์‹ค์ œ ์ถ”๋ก  ๊ณผ์ •์—์„œ๋Š” ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์˜ˆ์ธก๋œ ๊ผญ์ง“์  ๊ฐ’์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ •๋ ฌ๋œ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๋ฏ€๋กœ, ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฐ›์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

  • ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ๋ฅผ x,y ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ๊ฐ ๋žœ๋คํ•˜๊ฒŒ ์ด๋™์‹œํ‚จ ํ›„ (128, 256)์˜ ํฌ๊ธฐ๋กœ ํˆฌ์˜๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: Salt & Pepper ๋…ธ์ด์ฆˆ, ๋ฐ๊ธฐ ์กฐ์ ˆ(์ „์ฒด ๋ฐ๊ฒŒ, ์ „์ฒด ์–ด๋‘ก๊ฒŒ, ๊ทธ๋ฆผ์ž) ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ์…‹์€ ๋Œ€๋ถ€๋ถ„ ๋‚ฎ์— ์ฐ์€ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€์˜€๊ธฐ ๋•Œ๋ฌธ์—, ํ…Œ์ŠคํŠธ ๋ฆฌํฌํŒ… ์‹œ ์•ผ๊ฐ„ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ๋Š” ์„ฑ๋Šฅ์ด ๋‚ฎ์•„์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ๊ธฐ ์กฐ์ ˆ ๋ฐ ๊ทธ๋ฆผ์ž ์ถ”๊ฐ€ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ™˜๊ฒฝ์˜ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋„๋ก ํ•˜์˜€๋‹ค.

    ์ถ”๋ก  ์‹œ ์‹ค์ œ ์ž…๋ ฅ๋˜๋Š” ์ด๋ฏธ์ง€ ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ• ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์˜ˆ์‹œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • Output : (๋ฐฐ์น˜์‚ฌ์ด์ฆˆ, 7, 45, 1) ๋ชจ์–‘์˜ ํ…์„œ
    7 -> 7๊ธ€์ž 45 -> 45๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ๋ฌธ์ž (['๊ฐ€', '๋‚˜', '๋‹ค', '๋ผ', '๋งˆ', '๊ฑฐ', '๋„ˆ', '๋”', '๋Ÿฌ', '๋จธ', '๋ฒ„', '์„œ', '์–ด', '์ €', '๊ณ ', '๋…ธ', '๋„', '๋กœ', '๋ชจ', '๋ณด', '์†Œ', '์˜ค', '์กฐ', '๊ตฌ', '๋ˆ„', '๋‘', '๋ฃจ', '๋ฌด', '๋ถ€', '์ˆ˜', '์šฐ', '์ฃผ', 'ํ—ˆ', 'ํ•˜', 'ํ˜ธ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])


5. pt >> onnx >> pb >> tflite ๋ณ€ํ™˜

  • YOLOv5
    ์ œ๊ณตํ•ด์ฃผ๋Š” export.py๋ฅผ ์‚ฌ์šฉํ•ด TensorFlow Lite ํŒŒ์ผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด ๋•Œ, Non Max Suppression ๋ถ€๋ถ„์€ TensorFlow Lite๋กœ ๋ณ€ํ™˜๋˜์ง€ ์•Š์•„ ์•ˆ๋“œ๋กœ์ด๋“œ ์ŠคํŠœ๋””์˜ค ์ฝ”๋“œ๋ฅผ ์งค ๋•Œ ๋”ฐ๋กœ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. YOLO์˜ ์ถœ๋ ฅ์œผ๋กœ ๋‚˜์˜ค๋Š” (1, 3024, 6)์˜ ํ…์„œ๋Š” 3024๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์™€, ๊ฐ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์˜ x_center, y_center, width, height, confidence, ๊ฐ์ฒด ํด๋ž˜์Šค ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ๊ฐ€๋Šฅํ•œ 3024๊ฐœ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ค‘ ๊ฐ€์žฅ ํฐ confidence ๊ฐ’์„ ๊ฐ€์ง€๋Š” ํ•˜๋‚˜์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๋งŒ์„ ์ถ”๋ก ์˜ ๊ฒฐ๊ณผ๋กœ ๋งŒ๋“œ๋Š” ์ฝ”๋“œ์ด๋‹ค (Non Max Suppression).
float max_conf = detectionResult[0][0][4];
        int idx = 0;
        for(int i = 0; i<3024; i++){
            if(max_conf < detectionResult[0][i][4]){
                max_conf = detectionResult[0][i][4];
                idx = i;
            }
        }
  • ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ & ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ
    ๋ชจ๋ธ ํ•™์Šต ์‹œ, ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ€์žฅ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๋Š” ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๋ฅผ onnx ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ณ , tflite_converter.py๋ฅผ ํ†ตํ•ด ์ตœ์ข…์ ์œผ๋กœ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ƒ์—์„œ ๋ชจ๋ธ์„ ๋กœ๋“œํ•  ๋•Œ ์“ฐ์ด๋Š” TensorFlow Lite ํŒŒ์ผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

6. ์•ˆ๋“œ๋กœ์ด๋“œ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ œ์ž‘

์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์•ž์„œ ๋งŒ๋“  ํ•™์Šต๋œ ๋ชจ๋ธ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ์ฝ”๋“œ๋ฅผ ๋งŒ๋“ค๊ณ , ์ด๋ฅผ ์•ˆ๋“œ๋กœ์ด๋“œ ์ŠคํŠœ๋””์˜ค์˜ MainActivity์— ๋ถˆ๋Ÿฌ์™€์„œ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” YOLOv5(DHDetectionModel.java), ๊ผญ์ง“์  ์˜ˆ์ธก(AlignmentModel.java), ๊ธ€์ž์˜ˆ์ธก(CharModel.java) ์ด ์„ธ ๊ฐ€์ง€ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ์ฝ”๋“œ๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. ์ถ”๋ก  ์ฝ”๋“œ์— ์‚ฌ์šฉ๋œ ๋ฉ”์†Œ๋“œ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

  • ์ƒ์„ฑ์ž

    DHDetectionModel(Activity activity, Interpreter.Options options)
    AlignmentModel(Activity activity, Interpreter.Options options)
    CharModel(Activity activity, Interpreter.Options options)

    --> ๊ฐ ์ถ”๋ก  ์ธ์Šคํ„ด์Šค๋ฅผ ์ƒ์„ฑํ•  ๋•Œ, ๋ชจ๋ธ ์ธํ„ฐํ”„๋ฆฌํ„ฐ(mInterpreter)์™€ ๋ชจ๋ธ์— ๋“ค์–ด๊ฐ€๋Š” ์ž…๋ ฅ(mImageData)์— ๋Œ€ํ•ด์„œ ์ •์˜ํ•œ๋‹ค.

  • ๊ณตํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋œ ๋ฉ”์†Œ๋“œ

    MappedByteBuffer loadModelFile(Activity activity)

    --> tflite ํŒŒ์ผ์„ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ฉ”์†Œ๋“œ๋กœ ์ธํ„ฐํ”„๋ฆฌํ„ฐ ์ƒ์„ฑ์‹œ์— ์‚ฌ์šฉ๋œ๋‹ค.

    void convertBitmapToByteBuffer(Bitmap bitmap)

    --> ์ถ”๋ก ํ• ๋•Œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ๋“ค์–ด๊ฐ€๋Š” ์ž…๋ ฅ ํ˜•์‹์ธ ByteBuffer์˜ ํ˜•ํƒœ๋กœ ๋ฐ”๊พธ์–ด์ฃผ๋Š” ๋ฉ”์†Œ๋“œ์ด๋‹ค.

  • ์ถ”๋ก  ๋ฉ”์†Œ๋“œ

    • DHDetectionModel

      float[][] getProposal(Bitmap bm, Mat input)

      --> ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด float[2][5] ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ํƒ์ง€ํ•œ bounding box์˜ x, y, w, h, confidence์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. Yolov5์— nms๊ฐ€ tflite ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋”ฐ๋กœ nms ์ฝ”๋“œ๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค.

    • AlignmentModel

      float[] getCoordinate(Bitmap bitmap)

      --> DHDetectionModel์—์„œ ๋‚˜์˜จ ์ถœ๋ ฅ์„ ์ด์šฉํ•ด bounding box์˜ ํฌ๊ธฐ๋กœ ์ž๋ฅธ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด, float[8] ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๊ผญ์ง“์ ์˜ ๋„ค ์ขŒํ‘œ์˜ (x,y)๊ฐ’์„ ๋‹ด๊ณ ์žˆ๋‹ค.

    • CharModel

      String getString(Bitmap bm)

      --> AlignmentModel์—์„œ ๋‚˜์˜จ ์ถœ๋ ฅ์„ ์ด์šฉํ•ด ๋ฒˆํ˜ธํŒ ํฌ๊ธฐ๋กœ ์ด๋ฏธ์ง€๋ฅผ ์ž๋ฅธ ํ›„ ์ „๋‹จ๋ณ€ํ™˜์„ ์ด์šฉํ•ด ์ •๋ฉด์œผ๋กœ ๊ณง๊ฒŒ ํŽธ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด, String ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๋ฒˆํ˜ธํŒ์˜ ๊ธ€์ž ์ •๋ณด๋ฅผ ๋‹ด๊ณ ์žˆ๋‹ค.

  • ์ถ”๋ก  ์†๋„(FPS) ๋ฌธ์ œ ๊ฐœ์„ 
    ์ดˆ๊ธฐ์— ๋ชจ๋“  ๋ชจ๋ธ๋“ค์„ ์•ฑ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ์˜ค๋ž˜๊ฑธ๋ ค์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹ค์‹œ๊ฐ„ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค.

    1. YOLO ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ฐ์†Œ (640, 480) -> (256,192)
    2. GPU ๋Œ€๋ฆฌ์ž ์‚ฌ์šฉ
    3. ๋ฉ€ํ‹ฐ์Šค๋ ˆ๋”ฉ
  • ์ตœ์ข… ๋ชจ๋ธ๋ณ„ & ์ „์ฒด ์ถ”๋ก ์‹œ๊ฐ„

    ๋ชจ๋ธ ์ถ”๋ก ์‹œ๊ฐ„(millisecond)
    ๋ฒˆํ˜ธํŒ ํƒ์ง€ ๋ชจ๋ธ 45
    ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ 82
    ๊ธ€์ž ๋ชจ๋ธ 86
  • ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์˜ˆ

    ์˜ˆ์‹œ1 ์˜ˆ์‹œ2
    ์˜ˆ์‹œ1 ์˜ˆ์‹œ2

7. Google Play์— ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋“ฑ๋ก

๋‹ค์šด๋กœ๋“œ:

์„ค์น˜ ์ „ ์„ค์น˜ ํ›„
์˜ˆ์‹œ ์˜ˆ์‹œ2
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
AI drive app that can help user become beautiful.

็ˆฑ็พŽไธฝ Beauty ็ฎ€ไฝ“ไธญๆ–‡ Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding โ €โ € A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
โ€œ่ข‹้ผฏ้บป้บปโ€”โ€”ๆ™บ่ƒฝ่ดญ็‰ฉๅนณๅฐโ€่ƒฝๅคŸ็ฒพๅ‡†ๅœฐๅฎšไฝ่ฏ†ๅˆซๆฏไธ€ไธชๅ•†ๅ“

โ€œ่ข‹้ผฏ้บป้บปโ€”โ€”ๆ™บ่ƒฝ่ดญ็‰ฉๅนณๅฐโ€่ƒฝๅคŸ็ฒพๅ‡†ๅœฐๅฎšไฝ่ฏ†ๅˆซๆฏไธ€ไธชๅ•†ๅ“๏ผŒๅนถไธ”่ƒฝๅคŸ่ฟ”ๅ›žๅฎŒๆ•ดๅœฐ่ดญ็‰ฉๆธ…ๅ•ๅŠ้กพๅฎขๅบ”ไป˜็š„ๅฎž้™…ๅ•†ๅ“ๆ€ปไปทๆ ผ๏ผŒๆžๅคงๅœฐ้™ไฝŽ้›ถๅ”ฎ่กŒไธšๅฎž้™…่ฟ่ฅ่ฟ‡็จ‹ไธญๅทจๅคง็š„ไบบๅŠ›ๆˆๆœฌ๏ผŒๆๅ‡้›ถๅ”ฎ่กŒไธšๆ— ไบบๅŒ–ใ€่‡ชๅŠจๅŒ–ใ€ๆ™บ่ƒฝๅŒ–ๆฐดๅนณใ€‚

thomas-yanxin 192 Jan 05, 2023
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Breast Cancer Detection ๐Ÿ”ฌ ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022