Code release for ICCV 2021 paper "Anticipative Video Transformer"

Related tags

Deep LearningAVT
Overview

Anticipative Video Transformer

Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT)

PWC
PWC
PWC
PWC

[project page] [paper]

If this code helps with your work, please cite:

R. Girdhar and K. Grauman. Anticipative Video Transformer. IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

@inproceedings{girdhar2021anticipative,
    title = {{Anticipative Video Transformer}},
    author = {Girdhar, Rohit and Grauman, Kristen},
    booktitle = {ICCV},
    year = 2021
}

Installation

The code was tested on a Ubuntu 20.04 cluster with each server consisting of 8 V100 16GB GPUs.

First clone the repo and set up the required packages in a conda environment. You might need to make minor modifications here if some packages are no longer available. In most cases they should be replaceable by more recent versions.

$ git clone --recursive [email protected]:facebookresearch/AVT.git
$ conda env create -f env.yaml python=3.7.7
$ conda activate avt

Set up RULSTM codebase

If you plan to use EPIC-Kitchens datasets, you might need the train/test splits and evaluation code from RULSTM. This is also needed if you want to extract RULSTM predictions for test submissions.

$ cd external
$ git clone [email protected]:fpv-iplab/rulstm.git; cd rulstm
$ git checkout 57842b27d6264318be2cb0beb9e2f8c2819ad9bc
$ cd ../..

Datasets

The code expects the data in the DATA/ folder. You can also symlink it to a different folder on a faster/larger drive. Inside it will contain following folders:

  1. videos/ which will contain raw videos
  2. external/ which will contain pre-extracted features from prior work
  3. extracted_features/ which will contain other extracted features
  4. pretrained/ which contains pretrained models, eg from TIMM

The paths to these datasets are set in files like conf/dataset/epic_kitchens100/common.yaml so you can also update the paths there instead.

EPIC-Kitchens

To train only the AVT-h on top of pre-extracted features, you can download the features from RULSTM into DATA/external/rulstm/RULSTM/data_full for EK55 and DATA/external/rulstm/RULSTM/ek100_data_full for EK100. If you plan to train models on features extracted from a irCSN-152 model finetuned from IG65M features, you can download our pre-extracted features from here into DATA/extracted_features/ek100/ig65m_ftEk100_logits_10fps1s/rgb/ or here into DATA/extracted_features/ek55/ig65m_ftEk55train_logits_25fps/rgb/.

To train AVT end-to-end, you need to download the raw videos from EPIC-Kitchens. They can be organized as you wish, but this is how my folders are organized (since I first downloaded EK55 and then the remaining new videos for EK100):

DATA
├── videos
│   ├── EpicKitchens
│   │   └── videos_ht256px
│   │       ├── train
│   │       │   ├── P01
│   │       │   │   ├── P01_01.MP4
│   │       │   │   ├── P01_03.MP4
│   │       │   │   ├── ...
│   │       └── test
│   │           ├── P01
│   │           │   ├── P01_11.MP4
│   │           │   ├── P01_12.MP4
│   │           │   ├── ...
│   │           ...
│   ├── EpicKitchens100
│   │   └── videos_extension_ht256px
│   │       ├── P01
│   │       │   ├── P01_101.MP4
│   │       │   ├── P01_102.MP4
│   │       │   ├── ...
│   │       ...
│   ├── EGTEA/101020/videos/
│   │   ├── OP01-R01-PastaSalad.mp4
│   │   ...
│   └── 50Salads/rgb/
│       ├── rgb-01-1.avi
│       ...
├── external
│   └── rulstm
│       └── RULSTM
│           ├── egtea
│           │   ├── TSN-C_3_egtea_action_CE_flow_model_best_fcfull_hd
│           │   ...
│           ├── data_full  # (EK55)
│           │   ├── rgb
│           │   ├── obj
│           │   └── flow
│           └── ek100_data_full
│               ├── rgb
│               ├── obj
│               └── flow
└── extracted_features
    ├── ek100
    │   └── ig65m_ftEk100_logits_10fps1s
    │       └── rgb
    └── ek55
        └── ig65m_ftEk55train_logits_25fps
            └── rgb

If you use a different organization, you would need to edit the train/val dataset files, such as conf/dataset/epic_kitchens100/anticipation_train.yaml. Sometimes the values are overriden in the TXT config files, so might need to change there too. The root property takes a list of folders where the videos can be found, and it will search through all of them in order for a given video. Note that we resized the EPIC videos to 256px height for faster processing; you can use sample_scripts/resize_epic_256px.sh script for the same.

Please see docs/DATASETS.md for setting up other datasets.

Training and evaluating models

If you want to train AVT models, you would need pre-trained models from timm. We have experiments that use the following models:

$ mkdir DATA/pretrained/TIMM/
$ wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth -O DATA/pretrained/TIMM/jx_vit_base_patch16_224_in21k-e5005f0a.pth
$ wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth -O DATA/pretrained/TIMM/jx_vit_base_p16_224-80ecf9dd.pth

The code uses hydra 1.0 for configuration with submitit plugin for jobs via SLURM. We provide a launch.py script that is a wrapper around the training scripts and can run jobs locally or launch distributed jobs. The configuration overrides for a specific experiment is defined by a TXT file. You can run a config by:

$ python launch.py -c expts/01_ek100_avt.txt

where expts/01_ek100_avt.txt can be replaced by any TXT config file.

By default, the launcher will launch the job to a SLURM cluster. However, you can run it locally using one of the following options:

  1. -g to run locally in debug mode with 1 GPU and 0 workers. Will allow you to place pdb.set_trace() to debug interactively.
  2. -l to run locally using as many GPUs on the local machine.

This will run the training, which will run validation every few epochs. You can also only run testing using the -t flag.

The outputs will be stored in OUTPUTS/<path to config>. This would include tensorboard files that you can use to visualize the training progress.

Model Zoo

EPIC-Kitchens-100

Backbone Head Class-mean
[email protected] (Actions)
Config Model
AVT-b (IN21K) AVT-h 14.9 expts/01_ek100_avt.txt link
TSN (RGB) AVT-h 13.6 expts/02_ek100_avt_tsn.txt link
TSN (Obj) AVT-h 8.7 expts/03_ek100_avt_tsn_obj.txt link
irCSN152 (IG65M) AVT-h 12.8 expts/04_ek100_avt_ig65m.txt link

Late fusing predictions

For comparison to methods that use multiple modalities, you can late fuse predictions from multiple models using functions from notebooks/utils.py. For example, to compute the late fused performance reported in Table 3 (val) as AVT+ (obtains 15.9 [email protected] for actions):

from notebooks.utils import *
CFG_FILES = [
    ('expts/01_ek100_avt.txt', 0),
    ('expts/03_ek100_avt_tsn_obj.txt', 0),
]
WTS = [2.5, 0.5]
print_accuracies_epic(get_epic_marginalize_late_fuse(CFG_FILES, weights=WTS)[0])

Please see docs/MODELS.md for test submission and models on other datasets.

License

This codebase is released under the license terms specified in the LICENSE file. Any imported libraries, datasets or other code follows the license terms set by respective authors.

Acknowledgements

The codebase was built on top of facebookresearch/VMZ. Many thanks to Antonino Furnari, Fadime Sener and Miao Liu for help with prior work.

Owner
Facebook Research
Facebook Research
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023