Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Related tags

Deep LearningBread
Overview

Low-light Image Enhancement via Breaking Down the Darkness

by Qiming Hu, Xiaojie Guo.

1. Dependencies

  • Python3
  • PyTorch>=1.0
  • OpenCV-Python, TensorboardX
  • NVIDIA GPU+CUDA

2. Network Architecture

figure_arch

3. Data Preparation

3.1. Training dataset

  • 485 low/high-light image pairs from our485 of LOL dataset, each low image of which is augmented by our exposure_augment.py to generate 8 images under different exposures.
  • To train the MECAN (if it is desired), 559 randomly-selected multi-exposure sequences from SICE are adopted.

3.2. Tesing dataset

The images for testing can be downloaded in this link.

4. Usage

4.1. Training

  • Multi-exposure data synthesis: python exposure_augment.py
  • Train IAN: python train_IAN.py -m IAN --comment IAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche
  • Train ANSN: python train_ANSN.py -m1 IAN -m2 ANSN --comment ANSN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth
  • Train CAN: python train_CAN.py -m1 IAN -m3 FuseNet --comment CAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche -m1w ./checkpoints/IAN_335.pth
  • Train MECAN on SICE: python train_MECAN.py -m FuseNet --comment MECAN_train --batch_size 1 --val_interval 1 --num_epochs 500 --lr 0.001 --no_sche
  • Finetune MECAN on SICE and LOL datasets: python train_MECAN_finetune.py -m FuseNet --comment MECAN_finetune --batch_size 1 --val_interval 1 --num_epochs 500 --lr 1e-4 --no_sche -mw ./checkpoints/FuseNet_MECAN_for_Finetuning_404.pth

4.2. Testing

  • [Tips]: Using gamma correction for evaluation with parameter --gc; Show extra intermediate outputs with parameter --save_extra
  • Evaluation: python eval_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[eval] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth
  • Testing: python test_Bread.py -m1 IAN -m2 ANSN -m3 FuseNet -m4 FuseNet --mef --comment Bread+NFM+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth -m4w ./checkpoints/FuseNet_NFM_297.pth
  • Remove NFM: python test_Bread_NoNFM.py -m1 IAN -m2 ANSN -m3 FuseNet --mef -a 0.10 --comment Bread+ME[test] --batch_size 1 -m1w ./checkpoints/IAN_335.pth -m2w ./checkpoints/ANSN_422.pth -m3w ./checkpoints/FuseNet_MECAN_251.pth

4.3. Trained weights

Please refer to our release.

5. Quantitative comparison on eval15

table_eval

6. Visual comparison on eval15

figure_eval

7. Visual comparison on DICM

figure_test_dicm

8. Visual comparison on VV and MEF-DS

figure_test_vv_mefds

You might also like...
Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Official implementation of
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

Official PyTorch implementation of Spatial Dependency Networks.
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Comments
  • How to create data?

    How to create data?

    I have download datasets, but I have no idea about how to creat data. I read the code and found that I need eval/images eval/targets train/images_aug train/targets to train. Could you please tell me how to perpare these for folder? thanks so much!

    opened by Adolfhill 4
Owner
Qiming Hu
Qiming Hu
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022