Wafer Fault Detection - Wafer circleci with python

Overview

Wafer Fault Detection

Problem Statement:

Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor,
such as a crystalline silicon (c-Si), used for fabricationof integrated circuits and in photovoltaics,
to manufacture solar cells.

The inputs of various sensors for different wafers have been provided.
The goal is to build a machine learning model which predicts whether a wafer needs to be replaced or not
(i.e whether it is working or not) nased on the inputs from various sensors.
There are two classes: +1 and -1.
+1: Means that the wafer is in a working condition and it doesn't need to be replaced.
-1: Means that the wafer is faulty and it needa to be replaced.

Data Description

The client will send data in multiple sets of files in batches at a given location.
Data will contain Wafer names and 590 columns of different sensor values for each wafer.
The last column will have the "Good/Bad" value for each wafer.

Apart from training files, we laso require a "schema" file from the client, which contain all the
relevant information about the training files such as:

Name of the files, Length of Date value in FileName, Length of Time value in FileName, NUmber of Columnns, 
Name of Columns, and their dataype.

Data Validation

In This step, we perform different sets of validation on the given set of training files.

Name Validation: We validate the name of the files based on the given name in the schema file. We have 
created a regex patterg as per the name given in the schema fileto use for validation. After validating 
the pattern in the name, we check for the length of the date in the file name as well as the length of time 
in the file name. If all the values are as per requirements, we move such files to "Good_Data_Folder" else
we move such files to "Bad_Data_Folder."

Number of Columns: We validate the number of columns present in the files, and if it doesn't match with the
value given in the schema file, then the file id moves to "Bad_Data_Folder."

Name of Columns: The name of the columns is validated and should be the same as given in the schema file. 
If not, then the file is moved to "Bad_Data_Folder".

The datatype of columns: The datatype of columns is given in the schema file. This is validated when we insert
the files into Database. If the datatype is wrong, then the file is moved to "Bad_Data_Folder."

Null values in columns: If any of the columns in a file have all the values as NULL or missing, we discard such
a file and move it to "Bad_Data_Folder".

Data Insertion in Database

 Database Creation and Connection: Create a database with the given name passed. If the database is already created,
 open the connection to the database.
 
 Table creation in the database: Table with name - "Good_Data", is created in the database for inserting the files 
 in the "Good_Data_Folder" based on given column names and datatype in the schema file. If the table is already
 present, then the new table is not created and new files are inserted in the already present table as we want 
 training to be done on new as well as old training files.
 
 Insertion of file in the table: All the files in the "Good_Data_Folder" are inserted in the above-created table. If
 any file has invalid data type in any of the columns, the file is not loaded in the table and is moved to 
 "Bad_Data_Folder".

Model Training

 Data Export from Db: The data in a stored database is exported as a CSV file to be used for model training.
 
 Data Preprocessing: 
    Check for null values in the columns. If present, impute the null values using the KNN imputer.
    
    Check if any column has zero standard deviation, remove such columns as they don't give any information during 
    model training.
    
 Clustering: KMeans algorithm is used to create clusters in the preprocessed data. The optimum number of clusters 
 is selected

Create a file "Dockerfile" with below content

FROM python:3.7
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT [ "python" ]
CMD [ "main.py" ]

Create a "Procfile" with following content

web: gunicorn main:app

create a file ".circleci\config.yml" with following content

> $BASH_ENV echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV python3 -m venv venv . venv/bin/activate pip install --upgrade pip pip install -r requirements.txt - save_cache: key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }} paths: - "venv" - run: command: | . venv/bin/activate python -m pytest -v tests/test_script.py - store_artifacts: path: test-reports/ destination: tr1 - store_test_results: path: test-reports/ - setup_remote_docker: version: 19.03.13 - run: name: Build and push Docker image command: | docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG . docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG deploy: executor: heroku/default steps: - checkout - run: name: Storing previous commit command: | git rev-parse HEAD > ./commit.txt - heroku/install - setup_remote_docker: version: 18.06.0-ce - run: name: Pushing to heroku registry command: | heroku container:login #heroku ps:scale web=1 -a $HEROKU_APP_NAME heroku container:push web -a $HEROKU_APP_NAME heroku container:release web -a $HEROKU_APP_NAME workflows: build-test-deploy: jobs: - build-and-test - deploy: requires: - build-and-test filters: branches: only: - main ">
version: 2.1
orbs:
  heroku: circleci/[email protected]
jobs:
  build-and-test:
    executor: heroku/default
    docker:
      - image: circleci/python:3.6.2-stretch-browsers
        auth:
          username: mydockerhub-user
          password: $DOCKERHUB_PASSWORD  # context / project UI env-var reference
    steps:
      - checkout
      - restore_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
      - run:
          name: Install Python deps in a venv
          command: |
            echo 'export TAG=0.1.${CIRCLE_BUILD_NUM}' >> $BASH_ENV
            echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV
            python3 -m venv venv
            . venv/bin/activate
            pip install --upgrade pip
            pip install -r requirements.txt
      - save_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
          paths:
            - "venv"
      - run:
          command: |
            . venv/bin/activate
            python -m pytest -v tests/test_script.py
      - store_artifacts:
          path: test-reports/
          destination: tr1
      - store_test_results:
          path: test-reports/
      - setup_remote_docker:
          version: 19.03.13
      - run:
          name: Build and push Docker image
          command: |
            docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG .
            docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io
            docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG
  deploy:
    executor: heroku/default
    steps:
      - checkout
      - run:
          name: Storing previous commit
          command: |
            git rev-parse HEAD > ./commit.txt
      - heroku/install
      - setup_remote_docker:
          version: 18.06.0-ce
      - run:
          name: Pushing to heroku registry
          command: |
            heroku container:login
            #heroku ps:scale web=1 -a $HEROKU_APP_NAME
            heroku container:push web -a $HEROKU_APP_NAME
            heroku container:release web -a $HEROKU_APP_NAME

workflows:
  build-test-deploy:
    jobs:
      - build-and-test
      - deploy:
          requires:
            - build-and-test
          filters:
            branches:
              only:
                - main

to create requirements.txt

pip freeze>requirements.txt

initialize git repo

git push -u origin main ">
git init
git add .
git commit -m "first commit"
git branch -M main
git remote add origin 
   
    
git push -u origin main

   

create a account at circle ci

Circle CI

setup your project

Setup project

Select project setting in CircleCI and below environment variable

DOCKERHUB_USER
DOCKER_HUB_PASSWORD_USER
HEROKU_API_KEY
HEROKU_APP_NAME
HEROKU_EMAIL_ADDRESS
DOCKER_IMAGE_NAME=wafercircle3270303

to update the modification

git add .
git commit -m "proper message"
git push 
Owner
Avnish Yadav
Avnish Yadav
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
PyPDC is a Python package for calculating asymptotic Partial Directed Coherence estimations for brain connectivity analysis.

Python asymptotic Partial Directed Coherence and Directed Coherence estimation package for brain connectivity analysis. Free software: MIT license Doc

Heitor Baldo 3 Nov 26, 2022
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R

largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori

336 May 25, 2022
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023