Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

Overview

ElasticBatch

Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames

Build Status Coverage Status PyPI - Python Version

Overview

ElasticBatch makes it easy to efficiently insert batches of data in the form of Python dictionaries or pandas DataFrames into Elasticsearch. An efficient pattern when processing data bound for Elasticsearch is to collect data records ("documents") in a buffer to be bulk-inserted in batches. ElasticBatch provides this functionality to ease the overhead and reduce the code involved in inserting large batches or streams of data into Elasticsearch.

ElasticBatch has been tested with Elasticsearch 7.x, but should work with earlier versions.

Features

ElasticBatch implements the following features (see Usage for examples and more details) that allow a user to:

  • Work with documents as lists of dicts or as rows of pandas DataFrames
  • Add documents to a buffer that will automatically flush (insert its contents to Elasticsearch) when it is full
  • Interact with an intuitive interface that handles all of the underlying Elasticsearch client logic on behalf of the user
  • Track the elapsed time a document has been in the buffer, allowing a user to flush the buffer at a desired time interval even when it is not full
  • Work within a context manager that will automatically flush before exiting, alleviating the need for extra code to ensure all documents are written to the database
  • Optionally dump the buffer contents (documents) to a file before exiting due to an uncaught exception
  • Automatically add Elasticsearch metadata fields (e.g., _index, _id) to each document via user-supplied functions

Installation

This package is hosted on PyPI and can be installed via pip:

  • To install with the ability to process pandas DataFrames:
    $ pip install elasticbatch[pandas]
    
  • For a more lightweight installation with only the ability to process native Python dicts:
    $ pip install elasticbatch
    

The only dependency of the latter is elasticsearch whereas the former will also install pandas as a dependency.

To instead install from source:

$ git clone https://github.com/dkaslovsky/ElasticBatch.git
$ cd ElasticBatch
$ pip install ".[pandas]"

To install from source without the pandas dependency, replace the last line above with

$ pip install .

Usage

Basic Usage

Start by importing the ElasticBuffer class:

>>> from elasticbatch import ElasticBuffer

ElasticBuffer uses sensible defaults when initialized without parameters:

>>> esbuf = ElasticBuffer()

Alternatively, one can pass any of the following parameters:

  • size: (int) number of documents the buffer can hold before flushing to Elasticsearch; defaults to 5000.
  • client_kwargs: (dict) configuration passed to the underlying elasticsearch.Elasticsearch client; see the Elasticsearch documentation for all available options.
  • bulk_kwargs: (dict) configuration passed to the underlying call to elasticsearch.helpers.bulk for bulk insertion; see the Elasticsearch documentation for all available options.
  • verbose_errs: (bool) whether verbose (True, default) or truncated (False) exceptions are raised; see Exception Handling for more details.
  • dump_dir: (str) directory to write buffer contents when exiting context due to raised Exception; defaults to None for not writing to file.
  • **metadata_funcs: (callable) functions to apply to each document for adding Elasticsearch metadata.; see Automatic Elasticsearch Metadata Fields for more details.

Once initialized, ElasticBuffer exposes two methods, add and flush. Use add to add documents to the buffer, noting that all documents in the buffer will be flushed and inserted into Elasticsearch once the number of documents exceeds the buffer's size:

>>> docs = [
        {'_index': 'my-index', 'a': 1, 'b': 2.1, 'c': 'xyz'},
        {'_index': 'my-index', 'a': 3, 'b': 4.1, 'c': 'xyy'},
        {'_index': 'my-other-index', 'a': 5, 'b': 6.1, 'c': 'zzz'},
        {'_index': 'my-other-index', 'a': 7, 'b': 8.1, 'c': 'zyx'},
    ]
>>> esbuf.add(docs)

Note that all metadata fields required for indexing into Elasticsearch (e.g., _index above) must either be included in each document or added programmatically via callable kwarg parameters supplied to the ElasticBuffer instance (see below).

To manually force a buffer flush and insert all documents to Elasticsearch, use the flush method which does not accept any arguments:

>>> esbuf.flush()

A third method, show(), exists mostly for debug purposes and prints all documents currently in the buffer as newline-delimited json.

pandas DataFrames

One can directly insert a pandas DataFrame into the buffer and each row will be treated as a document:

>>> import pandas as pd
>>> df = pd.DataFrame(docs)
>>> print(df)

           _index  a    b    c
0        my-index  1  2.1  xyz
1        my-index  3  4.1  xyy
2  my-other-index  5  6.1  zzz
3  my-other-index  7  8.1  zyx

>>> esbuf.add(df)

The DataFrame's index (referring to df.index and not the column named _index) is ignored unless it is named, in which case it is added as an ordinary field (column).

Context Manager

ElasticBuffer can also be used as a context manager, offering the advantages of automatically flushing the remaining buffer contents when exiting scope as well as optionally dumping the buffer contents to a file before exiting due to an unhandled exception.

>>> with ElasticBuffer(size=100, dump_dir='/tmp') as esbuf:
       for doc in document_stream:
           doc = process_document(doc)  # some user-defined application-specific processing function
           esbuf.add(doc)

Elapsed Time

When using ElasticBuffer in a service consuming messages from some external source, it can be important to track how long messages have been waiting in the buffer to be flushed. In particular, a user may wish to flush, say, every hour to account for the situation where only a trickle of data is coming in and the buffer is not filling up. ElasticBuffer provides the elapsed time (in seconds) that its oldest message has been in the buffer:

>>> esbuf.oldest_elapsed_time

5.687833070755005  # the oldest message was inserted ~5.69 seconds ago

This information can be used to periodically check the elapsed time of the oldest message and force a flush if it exceeds a desired threshold.

Automatic Elasticsearch Metadata Fields

An ElasticBuffer instance can be initialized with kwargs corresponding to callable functions to add Elasticsearch metadata fields to each document added to the buffer:

>>> def my_index_func(doc): return 'my-index'
>>> def my_id_func(doc): return sum(doc.values())

>>> esbuf = ElasticBuffer(_index=my_index_func, _id=my_id_func)

>>> docs = [
        {'a': 1, 'b': 2},
        {'a': 8, 'b': 9},
    ]
>>> esbuf.add(docs)

>>> esbuf.show()

{"a": 1, "b": 2, "_index": "my-index", "_id": 3}
{"a": 8, "b": 9, "_index": "my-index", "_id": 17}

Callable kwargs add key/value pairs to each document, where the key corresponds to the name of the kwarg and the value is the function's return value. Each function must accept one argument (the document as a dict) and return one value. This also works for DataFrames, as they are transformed to documents (dicts) before applying the supplied metadata functions.

The key/value pairs are added to the top-level of each document. Note that the user need not add documents with data nested under a _source key, as metadata fields can be handled at the same level as the data fields. For further details, see the underlying Elasticsearch client bulk insert documentation on handling of metadata fields in flat dicts.

Exception Handling

For exception handing, ElasticBatch provides the base exception ElasticBatchError:

>>> from elasticbatch import ElasticBatchError

as well as the more specific ElasticBufferFlushError raised on errors flushing to Elasticsearch:

>>> from elasticbatch.exceptions import ElasticBufferFlushError

Elasticsearch exception messages can contain a copy of every document related to a failed bulk insertion request. As such messages can be very large, the verbose_errors flag can be used to optionally truncate the error message. When ElasticBuffer is initialized with verbose_errors=True, the entirety of the error message is returned. When verbose_errors=False, a shorter, descriptive message is returned. In both cases, the full, potentially verbose, exception is available via the err property on the raised ElasticBufferFlushError.

Tests

To run tests:

$ python -m unittest discover -v

The awesome green package is also highly recommended for running tests and reporting test coverage:

$ green -vvr
You might also like...
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

A powerful data analysis package based on mathematical step functions.  Strongly aligned with pandas.
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Statistical package in Python based on Pandas
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.
Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.

RPA Challenge in Python Projeto para realizar o RPA Challenge (www.rpachallenge.com), utilizando Python. O objetivo deste desafio é criar um fluxo de

Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Pandas and Dask test helper methods with beautiful error messages.
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Releases(v1.0.0)
Owner
Dan Kaslovsky
Dan Kaslovsky
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Python reader for Linked Data in HDF5 files

Linked Data are becoming more popular for user-created metadata in HDF5 files.

The HDF Group 8 May 17, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
This is a repo documenting the best practices in PySpark.

Spark-Syntax This is a public repo documenting all of the "best practices" of writing PySpark code from what I have learnt from working with PySpark f

Eric Xiao 447 Dec 25, 2022