Exploratory data analysis

Related tags

Data AnalysisEDA
Overview

Exploratory data analysis

An Exploratory data analysis APP

APP

TAPIWA CHAMBOKO

portfolio linkedin github

🚀 About Me

I'm a full stack developer experienced in deploying artificial intelligence powered apps

Authors

Acknowledgements

Demo

Live demo

Click here for Live demo

Installation

Install required packages

  pip install streamlit
  pip install pycaret
  pip insatll scikit-learn==0.23.2
  pip install numpy
  pip install seaborn 
  pip install pandas
  pip install matplotlib
  pip install plotly-express
  pip install streamlit-lottie

Datasets

  • Drop your Datasets in the app to get resuilts
  • you can use he exaple data provided in the app

Code

import streamlit as st
import pandas as pd  
import plotly.express as px  
import base64  
from io import StringIO, BytesIO  
import numpy as np
import pandas as pd
from sklearn import datasets
import matplotlib.pyplot as plt
from pandas_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report

def app():
    st.markdown('''
# **Exploratory data analysis App**
Please upload your xlsx file or click the button below to use example dataset
---
''')

# Upload CSV data
    with st.sidebar.header('Upload your XLSX data'):
        uploaded_file = st.sidebar.file_uploader("Upload your input XLSX file", type=["xlsx"])
       

    # Pandas Profiling Report
    if uploaded_file is not None:
        @st.cache
        def load_csv():
            csv = pd.read_excel(uploaded_file,engine='openpyxl')
            #csv = pd.read_csv(uploaded_file,encoding='latin1', index_col=None,usecols = "A,B,C,D,E,F,H,G,H,I,J")
            return csv
        df = load_csv()
        pr = ProfileReport(df, explorative=True)
        st.header('**Input DataFrame**')
        st.write(df)
        st.write('---')
        st.header('**Exploratory data analysis Report**')
        st_profile_report(pr)
        
    else:
        st.info('Awaiting for XLSX file to be uploaded.')
        
        if st.button('Press to use Example Dataset'):
            # Example data
            @st.cache
            def load_data():
                a = pd.DataFrame(
                    np.random.rand(100, 5),
                    columns=['a', 'b', 'c', 'd', 'e']
                )
                return a
            df = load_data()
            pr = ProfileReport(df, explorative=True)
            st.header('**Input DataFrame**')
            st.write(df)
            st.write('---')
            st.header('**Exploratory data analysis Report**')
            st_profile_report(pr)

Deployment

To deploy this project we used streamlit to create Web App

  • Run this code below
  streamlit run app.py 

Appendix

Happy Coding!!!!!!

Owner
tapiwa chamboko
tapiwa chamboko
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado.

Raster_Sampling_Demo (Resulting graph of this demo) Background Sampling values of a raster at specific geographic coordinates can be done with a numbe

2 Dec 13, 2022
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS

17 Jul 09, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021