Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

Overview

MOF-Water-Affinity-Prediction-

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge Structural Database and the CoRE_MOF 2019 dataset.

Prediction Model

The prediction model is used to determine whether a given MOF is hydrophobic or hydrophilic. It uses a Random Forest model from the XGBoost library through a scikit-learn interface. The model reads in a .csv file of training data and then predicts the water affinity of a user inputted MOF. The user can specify what input parameters are to be used in the model.

Overfitting/Underfitting

This script was created to investigate how the prediction model’s accuracy and precision vary with the number and combination of inputs. This script allows a user to compare how the different combinations of inputs affect the score and the standard deviation of the model’s results.

It operates by reading in a .csv file of training data containing 13 input parameters. It then generates a list of all the possible combinations of input parameters according to the lengths specified by the user. For example, if the user wants all the combinations of length 3, 4, and 10 possible, the program will generate a list of all combinations of those lengths, and then use each combination as input for the model. Basically, each combination will undergo the same process as in the prediction model above, and then its results will be added into a .csv file for later analysis. Finally, a plot is created with filters for visualization.

.cif to .csv Converter

In order to create a training set for the prediction model, a csv must be created with all the available datapoints. This includes the MOFs and their crystallographic data. The data needed is collected from three different sources: WebCSD, CoRE_MOF 2019 dataset, and the MOF’s .cif files. Furthermore, additional calculations need to be performed from the information collected from the .cif files.

The code works by reading a .txt file, folder, or both, containing the refcodes and .cif files given to the MOF by the Cambrdige Structural Database. It then searches for these refcodes in the CoRE_MOF 2019 dataset, and retrieves the crystallographic data attached to them. Additionally, it uses the .cif files of the MOFs to calculate the atomic mass percentage of the metals contained in the MOF. These calculations are stored in columns 14-17, but are treated as one input parameter in the models in an attempt to relate them to each other. It also states the MOFs in the training set as hydrophobic and hydrophilic based on previously collected information from the literature. Finally, it produces a .csv file ready for use in the prediction model.

.cif folders

Three different folders are used to store .cif files.

  1. cif: these are hydrophobic MOFs received from Dr. Z. Qiao.
  2. manual hydrophobic: these are hydrophobic MOFs collected from the literature
  3. manual hydrophilic: these are hydrophilic MOFs collected from the literature

To add additional .cif files:

Add additional .cif files into either the manual hydrophobic folder or the manual hydrophilic folder. Make sure the file names represent the CCDC refcodes (including or excluding the CoRE_MOF 2019 name extensions). Finally, add these refcodes into the .txt file available in each folder so that the .cif files can be read by the cif Reader program.

This project is licensed under the terms of the GNU General Public License v3.0

Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
Pipeline to convert a haploid assembly into diploid

HapDup (haplotype duplicator) is a pipeline to convert a haploid long read assembly into a dual diploid assembly. The reconstructed haplotypes

Mikhail Kolmogorov 50 Jan 05, 2023
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
Stream-Kafka-ELK-Stack - Weather data streaming using Apache Kafka and Elastic Stack.

Streaming Data Pipeline - Kafka + ELK Stack Streaming weather data using Apache Kafka and Elastic Stack. Data source: https://openweathermap.org/api O

Felipe Demenech Vasconcelos 2 Jan 20, 2022
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022