Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Related tags

Deep LearningCIConv
Overview

Zero-Shot Domain Adaptation with a Physics Prior

[arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and Jan van Gemert.

This repository contains the PyTorch implementation of Color Invariant Convolutions and all experiments and datasets described in the paper.

Abstract

We explore the zero-shot setting for day-night domain adaptation. The traditional domain adaptation setting is to train on one domain and adapt to the target domain by exploiting unlabeled data samples from the test set. As gathering relevant test data is expensive and sometimes even impossible, we remove any reliance on test data imagery and instead exploit a visual inductive prior derived from physics-based reflection models for domain adaptation. We cast a number of color invariant edge detectors as trainable layers in a convolutional neural network and evaluate their robustness to illumination changes. We show that the color invariant layer reduces the day-night distribution shift in feature map activations throughout the network. We demonstrate improved performance for zero-shot day to night domain adaptation on both synthetic as well as natural datasets in various tasks, including classification, segmentation and place recognition.

Getting started

All code and experiments have been tested with PyTorch 1.7.0.

Create a local clone of this repository:

git clone https://github.com/Attila94/CIConv

The method directory contains the color invariant convolution (CIConv) layer, as well as custom ResNet and VGG models using the CIConv layer. To use the CIConv layer in your own architecture, simply copy ciconv2d.py to the desired directory and add it as a regular PyTorch layer as

from ciconv2d import CIConv2d
ciconv = CIConv2d('W', k=3, scale=0.0)

See resnet.py and vgg.py for examples.

Datasets

Shapenet Illuminants

[Download link]

Shapenet Illuminants is used in the synthetic classification experiment. The images are rendered from a subset of the ShapeNet dataset using the physically based renderer Mitsuba. The scene is illuminated by a point light modeled as a black-body radiator with temperatures ranging between [1900, 20000] K and an ambient light source. The training set contains 1,000 samples for each of the 10 object classes recorded under "normal" lighting conditions (T = 6500 K). Multiple test sets with 300 samples per class are rendered for a variety of light source intensities and colors.

shapenet_illuminants

Common Objects Day and Night

[Download link]

Common Objects Day and Night (CODaN) is a natural day-night image classification dataset. More information can be found on the separate Github repository: https://github.com/Attila94/CODaN.

codan

Experiments

1. Synthetic classification

  1. Download [link] and unpack the Shapenet Illuminants dataset.
  2. In your local CIConv clone navigate to experiments/1_synthetic_classification and run
python train.py --root 'path/to/shapenet_illuminants' --hflip --seed 0 --invariant 'W'

This will train a ResNet-18 with the 'W' color invariant from scratch and evaluate on all test sets.

shapenet_illuminants_results

Classification accuracy of ResNet-18 with various color invariants. RGB (not invariant) performance degrades when illumination conditions differ between train and test set, while color invariants remain more stable. W performs best overall.

2. CODaN classification

  1. Download the Common Objects Day and Night (CODaN) dataset from https://github.com/Attila94/CODaN.
  2. In your local CIConv clone navigate to experiments/2_codan_classification and run
python train.py --root 'path/to/codan' --invariant 'W' --scale 0. --hflip --jitter 0.3 --rr 20 --seed 0

This will train a ResNet-18 with the 'W' color invariant from scratch and evaluate on all test sets.

Selected results from the paper:

Method Day (% accuracy) Night (% accuracy)
Baseline 80.39 +- 0.38 48.31 +- 1.33
E 79.79 +- 0.40 49.95 +- 1.60
W 81.49 +- 0.49 59.67 +- 0.93
C 78.04 +- 1.08 53.44 +- 1.28
N 77.44 +- 0.00 52.03 +- 0.27
H 75.20 +- 0.56 50.52 +- 1.34

3. Semantic segmentation

  1. Download and unpack the following public datasets: Cityscapes, Nighttime Driving, Dark Zurich.

  2. In your local CIConv clone navigate to experiments/3_segmentation.

  3. Set the proper dataset locations in train.py.

  4. Run

    python train.py --hflip --rc --jitter 0.3 --scale 0.3 --batch-size 6 --pretrained --invariant 'W'

Selected results from the paper:

Method Nighttime Driving (mIoU) Dark Zurich (mIoU)
RefineNet [baseline] 34.1 30.6
W-RefineNet [ours] 41.6 34.5

4. Visual place recognition

  1. Setup conda environment

    conda create -n ciconv python=3.9 mamba -c conda-forge
    conda activate ciconv
    mamba install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 scikit-image -c pytorch
  2. Navigate to experiments/4_visual_place_recognition/cnnimageretrieval-pytorch/.

  3. Run

    git submodule update --init # download a fork of cnnimageretrieval-pytorch
    sh cirtorch/utils/setup_tests.sh # download datasets and pre-trained models 
    python3 -m cirtorch.examples.test --network-path data/networks/retrieval-SfM-120k_w_resnet101_gem/model.path.tar --multiscale '[1, 1/2**(1/2), 1/2]' --datasets '247tokyo1k' --whitening 'retrieval-SfM-120k'
  4. Use --network-path retrievalSfM120k-resnet101-gem to compare against the vanilla method (without using the color invariant trained ResNet101).

  5. Use --datasets 'gp_dl_nr' to test on the GardensPointWalking dataset.

Selected results from the paper:

Method Tokyo 24/7 (mAP)
ResNet101 GeM [baseline] 85.0
W-ResNet101 GeM [ours] 88.3

Citation

If you find this repository useful for your work, please cite as follows:

@article{lengyel2021zeroshot,
      title={Zero-Shot Domain Adaptation with a Physics Prior}, 
      author={Attila Lengyel and Sourav Garg and Michael Milford and Jan C. van Gemert},
      year={2021},
      eprint={2108.05137},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Attila Lengyel
PhD candidate @ TU Delft Computer Vision Lab.
Attila Lengyel
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022