Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Related tags

Deep LearningTTP
Overview

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation

This is an official implementation of the NeurIPS 2021 paper: Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation. More details can be found at our project website.

teaser

Preparation

  1. Install dependencies
pip install -r requirements.txt
  1. Make libs

    cd ${PROJECT_ROOT}/lib
    make
  2. Place Penn Action data in data directory. (Instructions on Human3.6M and BBC Pose are coming soon.)

    Your directory tree should look like this:

    ${PROJECT_ROOT}
    └── data
        └── Penn_Action
            ├── frames
            ├── labels
            ├── tools
            └── README
    
  3. Download pretrained model of ResNet-18 and ResNet-50 and place them in models/pytorch/imagenet.

    Your directory tree should look like this:

    ${PROJECT_ROOT}
    └── models
        └── pytorch
            └── imagenet
                ├── resnet18-5c106cde.pth
                └── resnet50-19c8e357.pth
    

Training and Test-time Personalization

Training

python tools/train_joint.py \
   --cfg experiments/penn/joint_res50_128x128_1e-3_comb_attn_tf1_4head.yaml

Run Test-Time Personalization (online)

python tools/test_time_training.py \
   --cfg experiments/penn/ttp_res50_128x128_lr1e-4_online_downsample1_comb_attn_tf1_4head.yaml \
   TEST.MODEL_FILE ${MODEL_FILE}

Run Test-Time Personalization (offline)

python tools/test_time_training.py \
   --cfg experiments/penn/ttp_res50_128x128_lr1e-4_offline_downsample1_comb_attn_tf1_4head.yaml \
   TEST.MODEL_FILE ${MODEL_FILE}

Baseline Model

To train the baseline model for comparison

python tools/train.py --cfg experiments/penn/res50_128x128.yaml

Result

Configs, results and model checkpoints on Human3.6M and BBC Pose are coming soon.

Method TTP Scenario Penn Action Checkpoint
Baseline - 85.233 Google Drive
Ours before TTP 86.283 Google Drive
Ours online 87.660 -
Ours offline 88.633 -

Acknowlegement

TTP is developed based on HRNet. We also incorperate some code from IMM.

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023