SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

Related tags

Deep Learningsplade
Overview

SPLADE 🍴 + 🥄 = 🔎

This repository contains the weights for four models as well as the code for running inference for our two papers:

  • [v1]: SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking, Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant. SIGIR21 short paper. link
  • [v2]: SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval, Thibault Formal, Benjamin Piwowarski, Carlos Lassance, and Stéphane Clinchant. arxiv. link

We also provide some scripts to run evaluation on the BEIR benchmark in the beir_evaluation folder, as well as training code in the training_with_sentence_transformers folder.

TL; DR
Recently, dense retrieval with approximate nearest neighbors search based on BERT has demonstrated its strength for first-stage retrieval, questioning the competitiveness of traditional sparse models like BM25. In this work, we have proposed SPLADE, a sparse model revisiting query/document expansion. Our approach relies on in-batch negatives, logarithmic activation and FLOPS regularization to learn effective and efficient sparse representations. SPLADE is an appealing candidate for first-stage retrieval: it rivals the latest state-of-the-art dense retrieval models, its training procedure is straightforward, and its efficiency (sparsity/FLOPS) can be controlled explicitly through the regularization such that it can be operated on inverted indexes. In reason of its simplicity, SPLADE is a solid basis for further improvements in this line of research.

splade: a spork that is sharp along one edge or both edges, enabling it to be used as a knife, a fork and a spoon.

Updates

  • 24/09/2021: add the weights for v2 version of SPLADE (max pooling and margin-MSE distillation training) + add scripts to evaluate the model on the BEIR benchmark.
  • 16/11/2021: add code for training SPLADE using the Sentence Transformers framework + update LICENSE to properly include BEIR and Sentence Transformers.

SPLADE

We give a brief overview of the model architecture and the training strategy. Please refer to the paper for further details ! You can also have a look at our blogpost for additional insights and examples ! Feel also free to contact us via Twitter or mail @ [email protected] !

SPLADE architecture (see below) is rather simple: queries/documents are fed to BERT, and we rely on the MLM head used for pre-training to actually predict term importance in BERT vocabulary space. Thus, the model implicitly learns expansion. We also added a log activation that greatly helped making the representations sparse. Relevance is computed via dot product.

SPLADE architecture

The model thus represents queries and documents in the vocabulary space. In order to make these representations sparse -- so that we can use an inverted index, we explicitly train the model with regularization on q/d representations (L1 or FLOPS) as shown below:

splade training

SPLADE learns how to balance between effectiveness (via the ranking loss) and efficiency (via the regularization loss). By controlling lambda, we can adjust the trade-off.

How to use the code for inference

  • See inference_SPLADE.ipynb and beir_evaluation/splade_beir.ipynb

Training Splade

  • See training_with_sentence_transformers folder

Requirements

Requirements can be found in requirements.txt. In order to get the weights, be sure to have git lfs installed.

Main Results on MS MARCO (dev set) and TREC DL 2019 passage ranking

  • Below is a table of results comparing SPLADE to several competing baselines:

res

  • One can adjust the regularization strength for SPLADE to reach the optimal tradeoff between performance and efficiency:

perf vs flops

Cite

Please cite our work as:

@inproceedings{Formal2021_splade,
 author = {Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant},
 title = {{SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking}},
 booktitle = {Proc. of SIGIR},
 year = {2021},
}

License

SPLADE Copyright (c) 2021-present NAVER Corp.

SPLADE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. (see license)

You should have received a copy of the license along with this work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/ .

Comments
  • Evaluation on MSMARCO?

    Evaluation on MSMARCO?

    Hi, thanks for your very interesting work.

    Could you share how you evaluate to get the results here. Did you use inverted indexing or use this code? I am trying the later approach, but it is very slow on MSMARCO. Thank you

    opened by thongnt99 8
  • Cannot train SPLADEv2 to achieve the reported performance.

    Cannot train SPLADEv2 to achieve the reported performance.

    opened by namespace-Pt 6
  • FLOPs calculation

    FLOPs calculation

    I recently read your SPLADE paper and I think it's quite interesting. I have a question concerning FLOPs calculation in the paper.

    I think computing FLOPs for an inverted index involves the length of the activated posting lists(the overlapping terms in query and document). For example, a query a b c and a document c a e, since we must inspect the posting list of the overlapping terms a and c, the flops should at least be

    posting_length(a) + posting_length(c)
    

    because we perform summation for each entry in the posting list. However, in the paper you compute FLOPs by the probability that a, b, c are activated in the query and c, a, e are activated in the document. I think this may underestimate the flops of SPLADE because the less sparse the document, the longer posting lists in the inverted index.

    opened by namespace-Pt 6
  • move all source to splade/ module

    move all source to splade/ module

    Hi,

    I'd like to build client code that depends on SPLADE. Please would you consider this PR, which moves all source code into a splade folder, rather than a src/ folder. This appears to work satisfactorily for my use case.

    Craig

    opened by cmacdonald 2
  • configuration for splade++ results

    configuration for splade++ results

    Hi-- thanks for the nice work.

    I'm trying to index+retrieve using the naver/splade-cocondenser-ensembledistil model. Following the readme, I've done:

    export SPLADE_CONFIG_FULLPATH="config_default.yaml"
    python3 -m src.index \
      init_dict.model_type_or_dir=naver/splade-cocondenser-ensembledistil \ # <--- (from readme, using the new model)
      config.pretrained_no_yamlconfig=true \
      config.index_dir=experiments/pre-trained/index \
      index=msmarco  # <--- added
    
    export SPLADE_CONFIG_FULLPATH="config_default.yaml"
    python3 -m src.retrieve \
      init_dict.model_type_or_dir=naver/splade-cocondenser-ensembledistil \ # <--- (from readme, using the new model)
      config.pretrained_no_yamlconfig=true \
      config.index_dir=experiments/pre-trained/index \
      config.out_dir=experiments/pre-trained/out-dl19 \
      index=msmarco \  # <--- added
      retrieve_evaluate=msmarco # <--- added
    

    Everything runs just fine, but I'm getting rather poor results in the end:

    [email protected]: 0.18084248646927734
    recall ==> {'recall_5': 0.2665353390639923, 'recall_10': 0.3298710601719197, 'recall_15': 0.3694364851957974, 'recall_20': 0.3951050620821394, 'recall_30': 0.4270654250238777, 'recall_100': 0.5166069723018146, 'recall_200': 0.5560768863419291, 'recall_500': 0.606984240687679, 'recall_1000': 0.6402578796561604}
    

    I suspect it's a configuration problem on my end, but since the indexing process takes a bit of time, I thought I'd just ask before diving too far into the weeds: Is there a configuration file to use for the splade++ results, and how do I use it?

    Thanks!

    opened by seanmacavaney 2
  • Training by dot product and evaluation via inverted index?

    Training by dot product and evaluation via inverted index?

    Hey, I recently read your SPLADEv2 paper. That's so insightful! But I still have a few questions about it.

    1. Is the model trained with dot product similarity function included in the contrastive loss?
    2. Evaluation on MS MARCO is performed via inverted index backed by anserine?
    3. Evaluation on BEIR is implemented with sentencetransformer hence also via dot product?
    4. How much can you gurantee the sparsity of learned representation since it's softly regularized by L1 and FLOPS loss? Did you use a tuned threshold to ''zerofy'' ~0 value?
    opened by jordane95 2
  • Equation (1) and (4)

    Equation (1) and (4)

    In your paper, you said equation (1) is equivalent to the MLM prediction and E_j in equation (1) denotes the BERT input embedding for token j. If you use the default implementation of HuggingFace Transformers, E_j is not from the input layer but another embeddings matrix, which is called "decoder" in the "BertLMPredictionHead" (if you use BERT). Did you manually set the "decoder" weights to the input embedding weights?

    My other question is concerning equation (4). It computes the summation of the weights of the document/query terms. In the "forward" function of the Splade class (models.py) however, you use "torch.max" function. Can you explain this issue?

    opened by hguan6 2
  • When do you drop a term?

    When do you drop a term?

    I understand that the log-saturation function and regularization loss suppress the weights of the frequent terms. But when do you drop a term (setting the term weight to zero)? Is it when the logit is less or equal to zero, so that the log(1+ReLu(.)) function outputs zero?

    opened by hguan6 2
  • Benchmark Performance After Re-ranking?

    Benchmark Performance After Re-ranking?

    I'm curious if you've run your model with a "second-stage" reranker, on the BEIR benchmarks. Would you expect much benefit from this?

    Thank you, and excellent work!

    opened by mattare2 1
  • Initial pull request for efficient splade

    Initial pull request for efficient splade

    Initial pull request to add networks from https://dl.acm.org/doi/10.1145/3477495.3531833

    Networks are now available on huggingface as well:

    V) https://huggingface.co/naver/efficient-splade-V-large-doc https://huggingface.co/naver/efficient-splade-V-large-query

    VI) https://huggingface.co/naver/efficient-splade-VI-BT-large-doc https://huggingface.co/naver/efficient-splade-VI-BT-large-query

    Still need to add the links in the naverlabs website for the small and medium networks

    opened by cadurosar 0
  • Instructions on Using Pisa for Splade

    Instructions on Using Pisa for Splade

    Firstly, thanks for your series of amazing papers and well-organized code implementations.

    The two papers Wacky Weights in Learned Sparse Representations and the Revenge of Score-at-a-Time Query Evaluation and From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective show that using Pisa can make query retrieval much faster compared to using Anserini or code from the repo for Splade.

    The folder efficient_splade_pisa/ in the repo contains the instructions on using Pisa for Splade but the instructions are only for processed queries and indexes. If I only have a well-trained Splade model, how can I process the outputs of the Splade model (sparse vectors or its quantized version for Anserini) to make them suitable for Pisa? Can you provide more specific instructions on this?

    Best wishes

    opened by HansiZeng 1
  • Flops calcualtion

    Flops calcualtion

    Hello!

    I find that when I run flops, it always returns Nan.

    I see your last commit fixed "force new", and changed line 25 in transformer_evaluator.py to force_new=True, but in inverted_index.py line 23, seems that the self.n will return 0 if force_new is True.

    The flops no longer return nan after I remove the "force_new=True".

    Am I doing sth wrong here? And how should I get the correct flops..

    Thank you! Allen

    opened by wolu0901 2
Releases(v0.1.1)
  • v0.1.1(May 11, 2022)

  • v0.0.1(May 10, 2022)

    Release v0.0.1

    This release includes our initial raw version of the code

    • inference notebook and weights available
    • training is done via SentenceTransformers
    • evaluation is not available
    • we provide evaluation on the BEIR benchmark
    • the code is not really practical and every step is independent
    Source code(tar.gz)
    Source code(zip)
Owner
NAVER
NAVER
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022