Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Overview

Gotta Go Fast When Generating Data with Score-Based Models

This repo contains the official implementation for the paper Gotta Go Fast When Generating Data with Score-Based Models, which shows how to generate data as fast as possible with score-based models using a well-designed SDE solver. See the blog post for more details.


This code is a heavy modification of the Generative Modeling through Stochastic Differential Equations repository.

To run the experiments in the paper

See the requirements. Change the settings and folders in https://github.com/AlexiaJM/score_sde_fast_sampling/blob/main/experiments.sh and run parts of the script to run the CIFAR-10, LSUN-Church, and FFHQ experiments.

The SDE solver can be found here and the loop here.

For general usage

Please refer to the original code.

Pretrained checkpoints

https://drive.google.com/drive/folders/10pQygNzF7hOOLwP3q8GiNxSnFRpArUxQ?usp=sharing

References

If you find the code useful for your research, please consider citing

@article{jolicoeurmartineau2021gotta,
      title={Gotta Go Fast When Generating Data with Score-Based Models}, 
      author={Alexia Jolicoeur-Martineau and Ke Li and R{\'e}mi Pich{\'e}-Taillefer and Tal Kachman and Ioannis Mitliagkas},
      journal={arXiv preprint arXiv:2105.14080},
      year={2021}
}

and

@inproceedings{
  song2021scorebased,
  title={Score-Based Generative Modeling through Stochastic Differential Equations},
  author={Yang Song and Jascha Sohl-Dickstein and Diederik P Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=PxTIG12RRHS}
}

Official theme song can be found here: https://soundcloud.com/emyaze/gotta-go-fast.

Samples (see the paper for more samples)

Owner
Alexia Jolicoeur-Martineau
I'm a researcher in statistics and machine learning. I am particularly interested in GANs, denoising score-matching, and statistical divergences/metrics.
Alexia Jolicoeur-Martineau
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023